Visual Odometer on Videos of Endoscopic Capsules (VOVEC)

Detalhes bibliográficos
Autor(a) principal: Gil Martins Pinheiro
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/113958
Resumo: Since its introduction in 2001, capsule endoscopy has become the leading screening method for the small bowel - a region not easily accessible with traditional endoscopy techniques - revolutionizing the way diagnostics work in the field of small bowel diseases. These capsules are vitamin-sized and leverage from a small wireless camera to create 8 to 10 hour videos of the patients digestive tract. Due to the long duration of the videos produced, the human-based diagnosis is elongated, tedious and error-prone. Moreover, once a lesion is found, the localization information is scarce and hardware dependent, entailing desirability for a software-only endoscopic capsule localization system with added precision. This work stems from this need and, bearing this in mind, we propose the implementation of two deep-learning based methods to improve upon the limitations of the techniques used so far for the capsule position estimation. To train and test our networks, a dataset of 111 PillCam SB3 and 338 PillCam SB2 videos were used, courtesy of Centro Hospitalar do Porto (CHP). The first method consists in a simple capsule displacement estimation throughout the small bowel utilizing HomographyNet, a deep learning supervised approach that is used for homography computation between images. (DeTone et al. (2016)) Differently, the second proposed method is intended to provide a 3D position along the small intestine, utilizing a deep learning unsupervised approach labeled SfMLearner, which takes advantage of a combination between a DepthNet and a PoseNet to learn depth and ego-motion from video simultaneously. (Zhou et al. (2017))
id RCAP_ca577e6d75be50807cc211aa67fb0225
oai_identifier_str oai:repositorio-aberto.up.pt:10216/113958
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Visual Odometer on Videos of Endoscopic Capsules (VOVEC)Engenharia electrotécnica, electrónica e informáticaElectrical engineering, Electronic engineering, Information engineeringSince its introduction in 2001, capsule endoscopy has become the leading screening method for the small bowel - a region not easily accessible with traditional endoscopy techniques - revolutionizing the way diagnostics work in the field of small bowel diseases. These capsules are vitamin-sized and leverage from a small wireless camera to create 8 to 10 hour videos of the patients digestive tract. Due to the long duration of the videos produced, the human-based diagnosis is elongated, tedious and error-prone. Moreover, once a lesion is found, the localization information is scarce and hardware dependent, entailing desirability for a software-only endoscopic capsule localization system with added precision. This work stems from this need and, bearing this in mind, we propose the implementation of two deep-learning based methods to improve upon the limitations of the techniques used so far for the capsule position estimation. To train and test our networks, a dataset of 111 PillCam SB3 and 338 PillCam SB2 videos were used, courtesy of Centro Hospitalar do Porto (CHP). The first method consists in a simple capsule displacement estimation throughout the small bowel utilizing HomographyNet, a deep learning supervised approach that is used for homography computation between images. (DeTone et al. (2016)) Differently, the second proposed method is intended to provide a 3D position along the small intestine, utilizing a deep learning unsupervised approach labeled SfMLearner, which takes advantage of a combination between a DepthNet and a PoseNet to learn depth and ego-motion from video simultaneously. (Zhou et al. (2017))2018-07-132018-07-13T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/10216/113958TID:202114732engGil Martins Pinheiroinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T13:29:54Zoai:repositorio-aberto.up.pt:10216/113958Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:41:38.351472Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Visual Odometer on Videos of Endoscopic Capsules (VOVEC)
title Visual Odometer on Videos of Endoscopic Capsules (VOVEC)
spellingShingle Visual Odometer on Videos of Endoscopic Capsules (VOVEC)
Gil Martins Pinheiro
Engenharia electrotécnica, electrónica e informática
Electrical engineering, Electronic engineering, Information engineering
title_short Visual Odometer on Videos of Endoscopic Capsules (VOVEC)
title_full Visual Odometer on Videos of Endoscopic Capsules (VOVEC)
title_fullStr Visual Odometer on Videos of Endoscopic Capsules (VOVEC)
title_full_unstemmed Visual Odometer on Videos of Endoscopic Capsules (VOVEC)
title_sort Visual Odometer on Videos of Endoscopic Capsules (VOVEC)
author Gil Martins Pinheiro
author_facet Gil Martins Pinheiro
author_role author
dc.contributor.author.fl_str_mv Gil Martins Pinheiro
dc.subject.por.fl_str_mv Engenharia electrotécnica, electrónica e informática
Electrical engineering, Electronic engineering, Information engineering
topic Engenharia electrotécnica, electrónica e informática
Electrical engineering, Electronic engineering, Information engineering
description Since its introduction in 2001, capsule endoscopy has become the leading screening method for the small bowel - a region not easily accessible with traditional endoscopy techniques - revolutionizing the way diagnostics work in the field of small bowel diseases. These capsules are vitamin-sized and leverage from a small wireless camera to create 8 to 10 hour videos of the patients digestive tract. Due to the long duration of the videos produced, the human-based diagnosis is elongated, tedious and error-prone. Moreover, once a lesion is found, the localization information is scarce and hardware dependent, entailing desirability for a software-only endoscopic capsule localization system with added precision. This work stems from this need and, bearing this in mind, we propose the implementation of two deep-learning based methods to improve upon the limitations of the techniques used so far for the capsule position estimation. To train and test our networks, a dataset of 111 PillCam SB3 and 338 PillCam SB2 videos were used, courtesy of Centro Hospitalar do Porto (CHP). The first method consists in a simple capsule displacement estimation throughout the small bowel utilizing HomographyNet, a deep learning supervised approach that is used for homography computation between images. (DeTone et al. (2016)) Differently, the second proposed method is intended to provide a 3D position along the small intestine, utilizing a deep learning unsupervised approach labeled SfMLearner, which takes advantage of a combination between a DepthNet and a PoseNet to learn depth and ego-motion from video simultaneously. (Zhou et al. (2017))
publishDate 2018
dc.date.none.fl_str_mv 2018-07-13
2018-07-13T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/113958
TID:202114732
url https://hdl.handle.net/10216/113958
identifier_str_mv TID:202114732
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135731072892928