Toward travel pattern aware tourism region planning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/148009 |
Resumo: | Purpose: The purpose of this paper is to propose and demonstrate how Tourism2vec, an adaptation of a natural language processing technique Word2vec, can serve as a tool to investigate tourism spatio-temporal behavior and quantifying tourism dynamics. Design/methodology/approach: Tourism2vec, the proposed destination-tourist embedding model that learns from tourist spatio-temporal behavior is introduced, assessed and applied. Mobile positioning data from international tourists visiting Tuscany are used to construct travel itineraries, which are subsequently analyzed by applying the proposed algorithm. Locations and tourist types are then clustered according to travel patterns. Findings: Municipalities that are similar in terms of their scores of their neural embeddings tend to have a greater number of attractions than those geographically close. Moreover, clusters of municipalities obtained from the K-means algorithm do not entirely align with the provincial administrative segmentation. |
id |
RCAP_ca5fd8af4670b0ef56570305c8215df0 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/148009 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Toward travel pattern aware tourism region planninga big data approachBig DataMobile positioning dataTourism region planningTourism spatio-temporal behaviorTourism2vecTravel patternsTourism, Leisure and Hospitality ManagementPurpose: The purpose of this paper is to propose and demonstrate how Tourism2vec, an adaptation of a natural language processing technique Word2vec, can serve as a tool to investigate tourism spatio-temporal behavior and quantifying tourism dynamics. Design/methodology/approach: Tourism2vec, the proposed destination-tourist embedding model that learns from tourist spatio-temporal behavior is introduced, assessed and applied. Mobile positioning data from international tourists visiting Tuscany are used to construct travel itineraries, which are subsequently analyzed by applying the proposed algorithm. Locations and tourist types are then clustered according to travel patterns. Findings: Municipalities that are similar in terms of their scores of their neural embeddings tend to have a greater number of attractions than those geographically close. Moreover, clusters of municipalities obtained from the K-means algorithm do not entirely align with the provincial administrative segmentation.NOVA School of Business and Economics (NOVA SBE)RUNHan, QiweiAbreu Novais, MargaridaZejnilovic, Leid2023-01-23T22:14:02Z2021-08-092021-08-09T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10362/148009engHan, Q., Abreu Novais, M., & Zejnilovic, L. (2021). Toward travel pattern aware tourism region planning: a big data approach. International Journal of Contemporary Hospitality Management, 33(6), 2157-2175. https://doi.org/10.1108/IJCHM-07-2020-06730959-6119PURE: 28957558https://doi.org/10.1108/IJCHM-07-2020-0673info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:29:15Zoai:run.unl.pt:10362/148009Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:53:08.677537Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Toward travel pattern aware tourism region planning a big data approach |
title |
Toward travel pattern aware tourism region planning |
spellingShingle |
Toward travel pattern aware tourism region planning Han, Qiwei Big Data Mobile positioning data Tourism region planning Tourism spatio-temporal behavior Tourism2vec Travel patterns Tourism, Leisure and Hospitality Management |
title_short |
Toward travel pattern aware tourism region planning |
title_full |
Toward travel pattern aware tourism region planning |
title_fullStr |
Toward travel pattern aware tourism region planning |
title_full_unstemmed |
Toward travel pattern aware tourism region planning |
title_sort |
Toward travel pattern aware tourism region planning |
author |
Han, Qiwei |
author_facet |
Han, Qiwei Abreu Novais, Margarida Zejnilovic, Leid |
author_role |
author |
author2 |
Abreu Novais, Margarida Zejnilovic, Leid |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
NOVA School of Business and Economics (NOVA SBE) RUN |
dc.contributor.author.fl_str_mv |
Han, Qiwei Abreu Novais, Margarida Zejnilovic, Leid |
dc.subject.por.fl_str_mv |
Big Data Mobile positioning data Tourism region planning Tourism spatio-temporal behavior Tourism2vec Travel patterns Tourism, Leisure and Hospitality Management |
topic |
Big Data Mobile positioning data Tourism region planning Tourism spatio-temporal behavior Tourism2vec Travel patterns Tourism, Leisure and Hospitality Management |
description |
Purpose: The purpose of this paper is to propose and demonstrate how Tourism2vec, an adaptation of a natural language processing technique Word2vec, can serve as a tool to investigate tourism spatio-temporal behavior and quantifying tourism dynamics. Design/methodology/approach: Tourism2vec, the proposed destination-tourist embedding model that learns from tourist spatio-temporal behavior is introduced, assessed and applied. Mobile positioning data from international tourists visiting Tuscany are used to construct travel itineraries, which are subsequently analyzed by applying the proposed algorithm. Locations and tourist types are then clustered according to travel patterns. Findings: Municipalities that are similar in terms of their scores of their neural embeddings tend to have a greater number of attractions than those geographically close. Moreover, clusters of municipalities obtained from the K-means algorithm do not entirely align with the provincial administrative segmentation. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-08-09 2021-08-09T00:00:00Z 2023-01-23T22:14:02Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/148009 |
url |
http://hdl.handle.net/10362/148009 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Han, Q., Abreu Novais, M., & Zejnilovic, L. (2021). Toward travel pattern aware tourism region planning: a big data approach. International Journal of Contemporary Hospitality Management, 33(6), 2157-2175. https://doi.org/10.1108/IJCHM-07-2020-0673 0959-6119 PURE: 28957558 https://doi.org/10.1108/IJCHM-07-2020-0673 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138122410229760 |