Toward travel pattern aware tourism region planning

Detalhes bibliográficos
Autor(a) principal: Han, Qiwei
Data de Publicação: 2021
Outros Autores: Abreu Novais, Margarida, Zejnilovic, Leid
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/148009
Resumo: Purpose: The purpose of this paper is to propose and demonstrate how Tourism2vec, an adaptation of a natural language processing technique Word2vec, can serve as a tool to investigate tourism spatio-temporal behavior and quantifying tourism dynamics. Design/methodology/approach: Tourism2vec, the proposed destination-tourist embedding model that learns from tourist spatio-temporal behavior is introduced, assessed and applied. Mobile positioning data from international tourists visiting Tuscany are used to construct travel itineraries, which are subsequently analyzed by applying the proposed algorithm. Locations and tourist types are then clustered according to travel patterns. Findings: Municipalities that are similar in terms of their scores of their neural embeddings tend to have a greater number of attractions than those geographically close. Moreover, clusters of municipalities obtained from the K-means algorithm do not entirely align with the provincial administrative segmentation.
id RCAP_ca5fd8af4670b0ef56570305c8215df0
oai_identifier_str oai:run.unl.pt:10362/148009
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Toward travel pattern aware tourism region planninga big data approachBig DataMobile positioning dataTourism region planningTourism spatio-temporal behaviorTourism2vecTravel patternsTourism, Leisure and Hospitality ManagementPurpose: The purpose of this paper is to propose and demonstrate how Tourism2vec, an adaptation of a natural language processing technique Word2vec, can serve as a tool to investigate tourism spatio-temporal behavior and quantifying tourism dynamics. Design/methodology/approach: Tourism2vec, the proposed destination-tourist embedding model that learns from tourist spatio-temporal behavior is introduced, assessed and applied. Mobile positioning data from international tourists visiting Tuscany are used to construct travel itineraries, which are subsequently analyzed by applying the proposed algorithm. Locations and tourist types are then clustered according to travel patterns. Findings: Municipalities that are similar in terms of their scores of their neural embeddings tend to have a greater number of attractions than those geographically close. Moreover, clusters of municipalities obtained from the K-means algorithm do not entirely align with the provincial administrative segmentation.NOVA School of Business and Economics (NOVA SBE)RUNHan, QiweiAbreu Novais, MargaridaZejnilovic, Leid2023-01-23T22:14:02Z2021-08-092021-08-09T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10362/148009engHan, Q., Abreu Novais, M., & Zejnilovic, L. (2021). Toward travel pattern aware tourism region planning: a big data approach. International Journal of Contemporary Hospitality Management, 33(6), 2157-2175. https://doi.org/10.1108/IJCHM-07-2020-06730959-6119PURE: 28957558https://doi.org/10.1108/IJCHM-07-2020-0673info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:29:15Zoai:run.unl.pt:10362/148009Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:53:08.677537Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Toward travel pattern aware tourism region planning
a big data approach
title Toward travel pattern aware tourism region planning
spellingShingle Toward travel pattern aware tourism region planning
Han, Qiwei
Big Data
Mobile positioning data
Tourism region planning
Tourism spatio-temporal behavior
Tourism2vec
Travel patterns
Tourism, Leisure and Hospitality Management
title_short Toward travel pattern aware tourism region planning
title_full Toward travel pattern aware tourism region planning
title_fullStr Toward travel pattern aware tourism region planning
title_full_unstemmed Toward travel pattern aware tourism region planning
title_sort Toward travel pattern aware tourism region planning
author Han, Qiwei
author_facet Han, Qiwei
Abreu Novais, Margarida
Zejnilovic, Leid
author_role author
author2 Abreu Novais, Margarida
Zejnilovic, Leid
author2_role author
author
dc.contributor.none.fl_str_mv NOVA School of Business and Economics (NOVA SBE)
RUN
dc.contributor.author.fl_str_mv Han, Qiwei
Abreu Novais, Margarida
Zejnilovic, Leid
dc.subject.por.fl_str_mv Big Data
Mobile positioning data
Tourism region planning
Tourism spatio-temporal behavior
Tourism2vec
Travel patterns
Tourism, Leisure and Hospitality Management
topic Big Data
Mobile positioning data
Tourism region planning
Tourism spatio-temporal behavior
Tourism2vec
Travel patterns
Tourism, Leisure and Hospitality Management
description Purpose: The purpose of this paper is to propose and demonstrate how Tourism2vec, an adaptation of a natural language processing technique Word2vec, can serve as a tool to investigate tourism spatio-temporal behavior and quantifying tourism dynamics. Design/methodology/approach: Tourism2vec, the proposed destination-tourist embedding model that learns from tourist spatio-temporal behavior is introduced, assessed and applied. Mobile positioning data from international tourists visiting Tuscany are used to construct travel itineraries, which are subsequently analyzed by applying the proposed algorithm. Locations and tourist types are then clustered according to travel patterns. Findings: Municipalities that are similar in terms of their scores of their neural embeddings tend to have a greater number of attractions than those geographically close. Moreover, clusters of municipalities obtained from the K-means algorithm do not entirely align with the provincial administrative segmentation.
publishDate 2021
dc.date.none.fl_str_mv 2021-08-09
2021-08-09T00:00:00Z
2023-01-23T22:14:02Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/148009
url http://hdl.handle.net/10362/148009
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Han, Q., Abreu Novais, M., & Zejnilovic, L. (2021). Toward travel pattern aware tourism region planning: a big data approach. International Journal of Contemporary Hospitality Management, 33(6), 2157-2175. https://doi.org/10.1108/IJCHM-07-2020-0673
0959-6119
PURE: 28957558
https://doi.org/10.1108/IJCHM-07-2020-0673
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138122410229760