Potential of Composite Incorporation on the Mechanical Behavior of Multilayer Coatings

Detalhes bibliográficos
Autor(a) principal: Joseph,O.O.
Data de Publicação: 2021
Outros Autores: Fayomi,O. S. I., Inegbenebo,A. O., Ayoola,A. A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://scielo.pt/scielo.php?script=sci_arttext&pid=S0872-19042021000300159
Resumo: Abstract In this paper, the performance of a composite particle for the deposition of ZnO/Cr2O3 on a zinc electrolyte was examined. Its susceptibility to corrosion in 3.5% NaCl, using linear polarization, was investigated. The developed crystal was characterized by using scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS). The strengthening properties of the coated samples, i.e. the mechanical response, were studied using a high sensitive diamond microhardness indenter and a MTR-300 rigid wear tester. From the results, the effect of the composite coatings interestingly influenced the performance regarding microhardness, durability, corrosion mitigation and wear damage. In general, the micro-hardness value for the Zn-ZnO material was 125.0 HVN, while it was 130.5 HVN for Zn-8ZnO-16Cr2O3 composite coating. For Zn-8ZnO-20Cr2O3, a better hardness performance was noted with 138.0 HVN. From the wear study, Zn-8ZnO shows 0.018 g/min dissociation against the counter body with the best wear performance obtained at 0.005 g/min. The corrosion properties of the developed composite coating also tend towards a more positive region, with a corrosion rate of 0.850 mm/yr. This shows that the role of composite particulates maximally contributes to improve the strengthening characteristics of the developed coating.
id RCAP_ca624c66346fda4da148974768509ee0
oai_identifier_str oai:scielo:S0872-19042021000300159
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Potential of Composite Incorporation on the Mechanical Behavior of Multilayer Coatingsmaterials processingmicrostructuremanufacturingco-depositionwearAbstract In this paper, the performance of a composite particle for the deposition of ZnO/Cr2O3 on a zinc electrolyte was examined. Its susceptibility to corrosion in 3.5% NaCl, using linear polarization, was investigated. The developed crystal was characterized by using scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS). The strengthening properties of the coated samples, i.e. the mechanical response, were studied using a high sensitive diamond microhardness indenter and a MTR-300 rigid wear tester. From the results, the effect of the composite coatings interestingly influenced the performance regarding microhardness, durability, corrosion mitigation and wear damage. In general, the micro-hardness value for the Zn-ZnO material was 125.0 HVN, while it was 130.5 HVN for Zn-8ZnO-16Cr2O3 composite coating. For Zn-8ZnO-20Cr2O3, a better hardness performance was noted with 138.0 HVN. From the wear study, Zn-8ZnO shows 0.018 g/min dissociation against the counter body with the best wear performance obtained at 0.005 g/min. The corrosion properties of the developed composite coating also tend towards a more positive region, with a corrosion rate of 0.850 mm/yr. This shows that the role of composite particulates maximally contributes to improve the strengthening characteristics of the developed coating.Sociedade Portuguesa de Electroquímica2021-06-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articletext/htmlhttp://scielo.pt/scielo.php?script=sci_arttext&pid=S0872-19042021000300159Portugaliae Electrochimica Acta v.39 n.3 2021reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAPenghttp://scielo.pt/scielo.php?script=sci_arttext&pid=S0872-19042021000300159Joseph,O.O.Fayomi,O. S. I.Inegbenebo,A. O.Ayoola,A. A.info:eu-repo/semantics/openAccess2024-02-06T17:07:34Zoai:scielo:S0872-19042021000300159Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:20:27.463932Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Potential of Composite Incorporation on the Mechanical Behavior of Multilayer Coatings
title Potential of Composite Incorporation on the Mechanical Behavior of Multilayer Coatings
spellingShingle Potential of Composite Incorporation on the Mechanical Behavior of Multilayer Coatings
Joseph,O.O.
materials processing
microstructure
manufacturing
co-deposition
wear
title_short Potential of Composite Incorporation on the Mechanical Behavior of Multilayer Coatings
title_full Potential of Composite Incorporation on the Mechanical Behavior of Multilayer Coatings
title_fullStr Potential of Composite Incorporation on the Mechanical Behavior of Multilayer Coatings
title_full_unstemmed Potential of Composite Incorporation on the Mechanical Behavior of Multilayer Coatings
title_sort Potential of Composite Incorporation on the Mechanical Behavior of Multilayer Coatings
author Joseph,O.O.
author_facet Joseph,O.O.
Fayomi,O. S. I.
Inegbenebo,A. O.
Ayoola,A. A.
author_role author
author2 Fayomi,O. S. I.
Inegbenebo,A. O.
Ayoola,A. A.
author2_role author
author
author
dc.contributor.author.fl_str_mv Joseph,O.O.
Fayomi,O. S. I.
Inegbenebo,A. O.
Ayoola,A. A.
dc.subject.por.fl_str_mv materials processing
microstructure
manufacturing
co-deposition
wear
topic materials processing
microstructure
manufacturing
co-deposition
wear
description Abstract In this paper, the performance of a composite particle for the deposition of ZnO/Cr2O3 on a zinc electrolyte was examined. Its susceptibility to corrosion in 3.5% NaCl, using linear polarization, was investigated. The developed crystal was characterized by using scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS). The strengthening properties of the coated samples, i.e. the mechanical response, were studied using a high sensitive diamond microhardness indenter and a MTR-300 rigid wear tester. From the results, the effect of the composite coatings interestingly influenced the performance regarding microhardness, durability, corrosion mitigation and wear damage. In general, the micro-hardness value for the Zn-ZnO material was 125.0 HVN, while it was 130.5 HVN for Zn-8ZnO-16Cr2O3 composite coating. For Zn-8ZnO-20Cr2O3, a better hardness performance was noted with 138.0 HVN. From the wear study, Zn-8ZnO shows 0.018 g/min dissociation against the counter body with the best wear performance obtained at 0.005 g/min. The corrosion properties of the developed composite coating also tend towards a more positive region, with a corrosion rate of 0.850 mm/yr. This shows that the role of composite particulates maximally contributes to improve the strengthening characteristics of the developed coating.
publishDate 2021
dc.date.none.fl_str_mv 2021-06-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://scielo.pt/scielo.php?script=sci_arttext&pid=S0872-19042021000300159
url http://scielo.pt/scielo.php?script=sci_arttext&pid=S0872-19042021000300159
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://scielo.pt/scielo.php?script=sci_arttext&pid=S0872-19042021000300159
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Portuguesa de Electroquímica
publisher.none.fl_str_mv Sociedade Portuguesa de Electroquímica
dc.source.none.fl_str_mv Portugaliae Electrochimica Acta v.39 n.3 2021
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137292014583808