An artificial intelligence approach to Bacillus amyloliquefaciens CCMI 1051 cultures: Application to the production of anti-fungal compounds

Detalhes bibliográficos
Autor(a) principal: Caldeira, A. Teresa
Data de Publicação: 2011
Outros Autores: Arteiro, José, Roseiro, José, Neves, José, Vicente, Henrique
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10174/3449
https://doi.org/10.1016/j.biortech.2010.07.080
Resumo: The combined effect of incubation time (IT) and aspartic acid concentration (AA) on the predicted biomass concentration (BC), Bacillus sporulation (BS) and anti-fungal activity of compounds (AFA) produced by Bacillus amyloliquefaciens CCMI 1051, was studied using Artificial Neural Networks (ANNs). The values predicted by ANN were in good agreement with experimental results, and were better than those obtained when using Response Surface Methodology. The database used to train and validate ANNs contains experimental data of B. amyloliquefaciens cultures (AFA, BS and BC) with different incubation times (1–9 days) using aspartic acid (3–42 mM) as nitrogen source. After the training and validation stages, the 2–7-6–3 neural network results showed that maximum AFA can be achieved with 19.5 mM AA on day 9; however, maximum AFA can also be obtained with an incubation time as short as 6 days with 36.6 mM AA. Furthermore, the model results showed two distinct behaviors for AFA, depending on IT.
id RCAP_caa0b96186b37594d02f8be7500325f7
oai_identifier_str oai:dspace.uevora.pt:10174/3449
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling An artificial intelligence approach to Bacillus amyloliquefaciens CCMI 1051 cultures: Application to the production of anti-fungal compoundsBacillus amiloliquefaciensSpore formationAnti-fungal activityNeural networksThe combined effect of incubation time (IT) and aspartic acid concentration (AA) on the predicted biomass concentration (BC), Bacillus sporulation (BS) and anti-fungal activity of compounds (AFA) produced by Bacillus amyloliquefaciens CCMI 1051, was studied using Artificial Neural Networks (ANNs). The values predicted by ANN were in good agreement with experimental results, and were better than those obtained when using Response Surface Methodology. The database used to train and validate ANNs contains experimental data of B. amyloliquefaciens cultures (AFA, BS and BC) with different incubation times (1–9 days) using aspartic acid (3–42 mM) as nitrogen source. After the training and validation stages, the 2–7-6–3 neural network results showed that maximum AFA can be achieved with 19.5 mM AA on day 9; however, maximum AFA can also be obtained with an incubation time as short as 6 days with 36.6 mM AA. Furthermore, the model results showed two distinct behaviors for AFA, depending on IT.2012-01-12T14:43:24Z2012-01-122011-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/3449http://hdl.handle.net/10174/3449https://doi.org/10.1016/j.biortech.2010.07.080engCaldeira, A.T., Arteiro, J.M., Roseiro, J.C., Neves, J. & Vicente, H., An Artificial Intelligence Approach to Bacillus amyloliquefaciens CCMI 1051 Cultures: Application to the Production of Antifungal Compounds, Bioresource Technology, 102: 1496–1502, 2011.1496 - 15020960-8524102Bioresource Technology2Centro de Química de Évora; Departamento de Químicaatc@uevora.ptjmsa@uevora.ptjose.roseiro@lneg.ptjneves@di.uminho.pthvicente@uevora.pt276Caldeira, A. TeresaArteiro, JoséRoseiro, JoséNeves, JoséVicente, Henriqueinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T18:40:27Zoai:dspace.uevora.pt:10174/3449Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:58:48.743106Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv An artificial intelligence approach to Bacillus amyloliquefaciens CCMI 1051 cultures: Application to the production of anti-fungal compounds
title An artificial intelligence approach to Bacillus amyloliquefaciens CCMI 1051 cultures: Application to the production of anti-fungal compounds
spellingShingle An artificial intelligence approach to Bacillus amyloliquefaciens CCMI 1051 cultures: Application to the production of anti-fungal compounds
Caldeira, A. Teresa
Bacillus amiloliquefaciens
Spore formation
Anti-fungal activity
Neural networks
title_short An artificial intelligence approach to Bacillus amyloliquefaciens CCMI 1051 cultures: Application to the production of anti-fungal compounds
title_full An artificial intelligence approach to Bacillus amyloliquefaciens CCMI 1051 cultures: Application to the production of anti-fungal compounds
title_fullStr An artificial intelligence approach to Bacillus amyloliquefaciens CCMI 1051 cultures: Application to the production of anti-fungal compounds
title_full_unstemmed An artificial intelligence approach to Bacillus amyloliquefaciens CCMI 1051 cultures: Application to the production of anti-fungal compounds
title_sort An artificial intelligence approach to Bacillus amyloliquefaciens CCMI 1051 cultures: Application to the production of anti-fungal compounds
author Caldeira, A. Teresa
author_facet Caldeira, A. Teresa
Arteiro, José
Roseiro, José
Neves, José
Vicente, Henrique
author_role author
author2 Arteiro, José
Roseiro, José
Neves, José
Vicente, Henrique
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Caldeira, A. Teresa
Arteiro, José
Roseiro, José
Neves, José
Vicente, Henrique
dc.subject.por.fl_str_mv Bacillus amiloliquefaciens
Spore formation
Anti-fungal activity
Neural networks
topic Bacillus amiloliquefaciens
Spore formation
Anti-fungal activity
Neural networks
description The combined effect of incubation time (IT) and aspartic acid concentration (AA) on the predicted biomass concentration (BC), Bacillus sporulation (BS) and anti-fungal activity of compounds (AFA) produced by Bacillus amyloliquefaciens CCMI 1051, was studied using Artificial Neural Networks (ANNs). The values predicted by ANN were in good agreement with experimental results, and were better than those obtained when using Response Surface Methodology. The database used to train and validate ANNs contains experimental data of B. amyloliquefaciens cultures (AFA, BS and BC) with different incubation times (1–9 days) using aspartic acid (3–42 mM) as nitrogen source. After the training and validation stages, the 2–7-6–3 neural network results showed that maximum AFA can be achieved with 19.5 mM AA on day 9; however, maximum AFA can also be obtained with an incubation time as short as 6 days with 36.6 mM AA. Furthermore, the model results showed two distinct behaviors for AFA, depending on IT.
publishDate 2011
dc.date.none.fl_str_mv 2011-01-01T00:00:00Z
2012-01-12T14:43:24Z
2012-01-12
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10174/3449
http://hdl.handle.net/10174/3449
https://doi.org/10.1016/j.biortech.2010.07.080
url http://hdl.handle.net/10174/3449
https://doi.org/10.1016/j.biortech.2010.07.080
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Caldeira, A.T., Arteiro, J.M., Roseiro, J.C., Neves, J. & Vicente, H., An Artificial Intelligence Approach to Bacillus amyloliquefaciens CCMI 1051 Cultures: Application to the Production of Antifungal Compounds, Bioresource Technology, 102: 1496–1502, 2011.
1496 - 1502
0960-8524
102
Bioresource Technology
2
Centro de Química de Évora; Departamento de Química
atc@uevora.pt
jmsa@uevora.pt
jose.roseiro@lneg.pt
jneves@di.uminho.pt
hvicente@uevora.pt
276
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136470990061568