An artificial intelligence approach to Bacillus amyloliquefaciens CCMI 1051 cultures: Application to the production of anti-fungal compounds
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10174/3449 https://doi.org/10.1016/j.biortech.2010.07.080 |
Resumo: | The combined effect of incubation time (IT) and aspartic acid concentration (AA) on the predicted biomass concentration (BC), Bacillus sporulation (BS) and anti-fungal activity of compounds (AFA) produced by Bacillus amyloliquefaciens CCMI 1051, was studied using Artificial Neural Networks (ANNs). The values predicted by ANN were in good agreement with experimental results, and were better than those obtained when using Response Surface Methodology. The database used to train and validate ANNs contains experimental data of B. amyloliquefaciens cultures (AFA, BS and BC) with different incubation times (1–9 days) using aspartic acid (3–42 mM) as nitrogen source. After the training and validation stages, the 2–7-6–3 neural network results showed that maximum AFA can be achieved with 19.5 mM AA on day 9; however, maximum AFA can also be obtained with an incubation time as short as 6 days with 36.6 mM AA. Furthermore, the model results showed two distinct behaviors for AFA, depending on IT. |
id |
RCAP_caa0b96186b37594d02f8be7500325f7 |
---|---|
oai_identifier_str |
oai:dspace.uevora.pt:10174/3449 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
An artificial intelligence approach to Bacillus amyloliquefaciens CCMI 1051 cultures: Application to the production of anti-fungal compoundsBacillus amiloliquefaciensSpore formationAnti-fungal activityNeural networksThe combined effect of incubation time (IT) and aspartic acid concentration (AA) on the predicted biomass concentration (BC), Bacillus sporulation (BS) and anti-fungal activity of compounds (AFA) produced by Bacillus amyloliquefaciens CCMI 1051, was studied using Artificial Neural Networks (ANNs). The values predicted by ANN were in good agreement with experimental results, and were better than those obtained when using Response Surface Methodology. The database used to train and validate ANNs contains experimental data of B. amyloliquefaciens cultures (AFA, BS and BC) with different incubation times (1–9 days) using aspartic acid (3–42 mM) as nitrogen source. After the training and validation stages, the 2–7-6–3 neural network results showed that maximum AFA can be achieved with 19.5 mM AA on day 9; however, maximum AFA can also be obtained with an incubation time as short as 6 days with 36.6 mM AA. Furthermore, the model results showed two distinct behaviors for AFA, depending on IT.2012-01-12T14:43:24Z2012-01-122011-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/3449http://hdl.handle.net/10174/3449https://doi.org/10.1016/j.biortech.2010.07.080engCaldeira, A.T., Arteiro, J.M., Roseiro, J.C., Neves, J. & Vicente, H., An Artificial Intelligence Approach to Bacillus amyloliquefaciens CCMI 1051 Cultures: Application to the Production of Antifungal Compounds, Bioresource Technology, 102: 1496–1502, 2011.1496 - 15020960-8524102Bioresource Technology2Centro de Química de Évora; Departamento de Químicaatc@uevora.ptjmsa@uevora.ptjose.roseiro@lneg.ptjneves@di.uminho.pthvicente@uevora.pt276Caldeira, A. TeresaArteiro, JoséRoseiro, JoséNeves, JoséVicente, Henriqueinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T18:40:27Zoai:dspace.uevora.pt:10174/3449Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:58:48.743106Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
An artificial intelligence approach to Bacillus amyloliquefaciens CCMI 1051 cultures: Application to the production of anti-fungal compounds |
title |
An artificial intelligence approach to Bacillus amyloliquefaciens CCMI 1051 cultures: Application to the production of anti-fungal compounds |
spellingShingle |
An artificial intelligence approach to Bacillus amyloliquefaciens CCMI 1051 cultures: Application to the production of anti-fungal compounds Caldeira, A. Teresa Bacillus amiloliquefaciens Spore formation Anti-fungal activity Neural networks |
title_short |
An artificial intelligence approach to Bacillus amyloliquefaciens CCMI 1051 cultures: Application to the production of anti-fungal compounds |
title_full |
An artificial intelligence approach to Bacillus amyloliquefaciens CCMI 1051 cultures: Application to the production of anti-fungal compounds |
title_fullStr |
An artificial intelligence approach to Bacillus amyloliquefaciens CCMI 1051 cultures: Application to the production of anti-fungal compounds |
title_full_unstemmed |
An artificial intelligence approach to Bacillus amyloliquefaciens CCMI 1051 cultures: Application to the production of anti-fungal compounds |
title_sort |
An artificial intelligence approach to Bacillus amyloliquefaciens CCMI 1051 cultures: Application to the production of anti-fungal compounds |
author |
Caldeira, A. Teresa |
author_facet |
Caldeira, A. Teresa Arteiro, José Roseiro, José Neves, José Vicente, Henrique |
author_role |
author |
author2 |
Arteiro, José Roseiro, José Neves, José Vicente, Henrique |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Caldeira, A. Teresa Arteiro, José Roseiro, José Neves, José Vicente, Henrique |
dc.subject.por.fl_str_mv |
Bacillus amiloliquefaciens Spore formation Anti-fungal activity Neural networks |
topic |
Bacillus amiloliquefaciens Spore formation Anti-fungal activity Neural networks |
description |
The combined effect of incubation time (IT) and aspartic acid concentration (AA) on the predicted biomass concentration (BC), Bacillus sporulation (BS) and anti-fungal activity of compounds (AFA) produced by Bacillus amyloliquefaciens CCMI 1051, was studied using Artificial Neural Networks (ANNs). The values predicted by ANN were in good agreement with experimental results, and were better than those obtained when using Response Surface Methodology. The database used to train and validate ANNs contains experimental data of B. amyloliquefaciens cultures (AFA, BS and BC) with different incubation times (1–9 days) using aspartic acid (3–42 mM) as nitrogen source. After the training and validation stages, the 2–7-6–3 neural network results showed that maximum AFA can be achieved with 19.5 mM AA on day 9; however, maximum AFA can also be obtained with an incubation time as short as 6 days with 36.6 mM AA. Furthermore, the model results showed two distinct behaviors for AFA, depending on IT. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-01-01T00:00:00Z 2012-01-12T14:43:24Z 2012-01-12 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10174/3449 http://hdl.handle.net/10174/3449 https://doi.org/10.1016/j.biortech.2010.07.080 |
url |
http://hdl.handle.net/10174/3449 https://doi.org/10.1016/j.biortech.2010.07.080 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Caldeira, A.T., Arteiro, J.M., Roseiro, J.C., Neves, J. & Vicente, H., An Artificial Intelligence Approach to Bacillus amyloliquefaciens CCMI 1051 Cultures: Application to the Production of Antifungal Compounds, Bioresource Technology, 102: 1496–1502, 2011. 1496 - 1502 0960-8524 102 Bioresource Technology 2 Centro de Química de Évora; Departamento de Química atc@uevora.pt jmsa@uevora.pt jose.roseiro@lneg.pt jneves@di.uminho.pt hvicente@uevora.pt 276 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136470990061568 |