Dynamics of a gyrostat satellite with the vector of gyrostatic moment tangent to the orbital plane
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10174/33298 https://doi.org/10.1016/j.asr.2022.03.004 |
Resumo: | In this paper, a gyrostat satellite in a circular orbit with its gyrostatic moment tangent to the orbital plane and collinear with the orbital speed is studied regarding its equilibria, bifurcation of equilibria, and asymptotic stability conditions. In the general case, where any gyrostat angular momentum is aligned with any of the orbital coordinate frames, interesting results arose regarding its equilibria bifurcation regarding conditions near to the ones presented in this paper, namely equilibria regions outside their main regions near to the orbital plane tangent. For equilibria and bifurcation of equilibria, a symbolic-numerical method is used to obtain the polynomial equations in function of non-dimensional parameters whose roots are equivalent to the number of equilibria positions. For the asymptotic stability, the results are tested using the Lyapunov stability theory scheme. |
id |
RCAP_cb35c992b7d6285bba6ebd2b90e5aebc |
---|---|
oai_identifier_str |
oai:dspace.uevora.pt:10174/33298 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Dynamics of a gyrostat satellite with the vector of gyrostatic moment tangent to the orbital planeAerospace dynamicsSatellite gyrostatEquilibriumStabilisationBifurcation of equilibriaIn this paper, a gyrostat satellite in a circular orbit with its gyrostatic moment tangent to the orbital plane and collinear with the orbital speed is studied regarding its equilibria, bifurcation of equilibria, and asymptotic stability conditions. In the general case, where any gyrostat angular momentum is aligned with any of the orbital coordinate frames, interesting results arose regarding its equilibria bifurcation regarding conditions near to the ones presented in this paper, namely equilibria regions outside their main regions near to the orbital plane tangent. For equilibria and bifurcation of equilibria, a symbolic-numerical method is used to obtain the polynomial equations in function of non-dimensional parameters whose roots are equivalent to the number of equilibria positions. For the asymptotic stability, the results are tested using the Lyapunov stability theory scheme.Advances in Space Research2023-01-09T15:01:57Z2023-01-092022-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/33298http://hdl.handle.net/10174/33298https://doi.org/10.1016/j.asr.2022.03.004enghttps://www.sciencedirect.com/science/article/pii/S0273117722001909ndndndruimelicio@gmail.com523Morais, RenatoSantos, LuisSilva, AndréMelicio, Ruiinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T19:34:55Zoai:dspace.uevora.pt:10174/33298Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:22:08.619441Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Dynamics of a gyrostat satellite with the vector of gyrostatic moment tangent to the orbital plane |
title |
Dynamics of a gyrostat satellite with the vector of gyrostatic moment tangent to the orbital plane |
spellingShingle |
Dynamics of a gyrostat satellite with the vector of gyrostatic moment tangent to the orbital plane Morais, Renato Aerospace dynamics Satellite gyrostat Equilibrium Stabilisation Bifurcation of equilibria |
title_short |
Dynamics of a gyrostat satellite with the vector of gyrostatic moment tangent to the orbital plane |
title_full |
Dynamics of a gyrostat satellite with the vector of gyrostatic moment tangent to the orbital plane |
title_fullStr |
Dynamics of a gyrostat satellite with the vector of gyrostatic moment tangent to the orbital plane |
title_full_unstemmed |
Dynamics of a gyrostat satellite with the vector of gyrostatic moment tangent to the orbital plane |
title_sort |
Dynamics of a gyrostat satellite with the vector of gyrostatic moment tangent to the orbital plane |
author |
Morais, Renato |
author_facet |
Morais, Renato Santos, Luis Silva, André Melicio, Rui |
author_role |
author |
author2 |
Santos, Luis Silva, André Melicio, Rui |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Morais, Renato Santos, Luis Silva, André Melicio, Rui |
dc.subject.por.fl_str_mv |
Aerospace dynamics Satellite gyrostat Equilibrium Stabilisation Bifurcation of equilibria |
topic |
Aerospace dynamics Satellite gyrostat Equilibrium Stabilisation Bifurcation of equilibria |
description |
In this paper, a gyrostat satellite in a circular orbit with its gyrostatic moment tangent to the orbital plane and collinear with the orbital speed is studied regarding its equilibria, bifurcation of equilibria, and asymptotic stability conditions. In the general case, where any gyrostat angular momentum is aligned with any of the orbital coordinate frames, interesting results arose regarding its equilibria bifurcation regarding conditions near to the ones presented in this paper, namely equilibria regions outside their main regions near to the orbital plane tangent. For equilibria and bifurcation of equilibria, a symbolic-numerical method is used to obtain the polynomial equations in function of non-dimensional parameters whose roots are equivalent to the number of equilibria positions. For the asymptotic stability, the results are tested using the Lyapunov stability theory scheme. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-06-01T00:00:00Z 2023-01-09T15:01:57Z 2023-01-09 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10174/33298 http://hdl.handle.net/10174/33298 https://doi.org/10.1016/j.asr.2022.03.004 |
url |
http://hdl.handle.net/10174/33298 https://doi.org/10.1016/j.asr.2022.03.004 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S0273117722001909 nd nd nd ruimelicio@gmail.com 523 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Advances in Space Research |
publisher.none.fl_str_mv |
Advances in Space Research |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136703031541760 |