Predicting social media performance metrics and evaluation of the impact on brand building: a data mining approach

Detalhes bibliográficos
Autor(a) principal: Moro, S.
Data de Publicação: 2016
Outros Autores: Rita, P., Vala, B.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/12203
Resumo: This study presents a research approach using data mining for predicting the performance metrics of posts published in brands' Facebook pages. Twelve posts' performance metrics extracted from a cosmetic company's page including 790 publications were modeled, with the two best results achieving a mean absolute percentage error of around 27%. One of them, the "Lifetime Post Consumers" model, was assessed using sensitivity analysis to understand how each of the seven input features influenced it (category, page total likes, type, month, hour, weekday, paid). The type of content was considered the most relevant feature for the model, with a relevance of 36%. A status post captures around twice the attention of the remaining three types (link, photo, video). We have drawn a decision process flow from the "Lifetime Post Consumers" model, which by complementing the sensitivity analysis information may be used to support manager's decisions on whether to publish a post.
id RCAP_cbeaf7bbc32e818a5e05b10556c322ee
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/12203
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Predicting social media performance metrics and evaluation of the impact on brand building: a data mining approachSocial networksSocial mediaData miningKnowledge extractionSensitivity analysisBrand buildingThis study presents a research approach using data mining for predicting the performance metrics of posts published in brands' Facebook pages. Twelve posts' performance metrics extracted from a cosmetic company's page including 790 publications were modeled, with the two best results achieving a mean absolute percentage error of around 27%. One of them, the "Lifetime Post Consumers" model, was assessed using sensitivity analysis to understand how each of the seven input features influenced it (category, page total likes, type, month, hour, weekday, paid). The type of content was considered the most relevant feature for the model, with a relevance of 36%. A status post captures around twice the attention of the remaining three types (link, photo, video). We have drawn a decision process flow from the "Lifetime Post Consumers" model, which by complementing the sensitivity analysis information may be used to support manager's decisions on whether to publish a post.Elsevier2016-12-07T16:49:19Z2016-01-01T00:00:00Z20162019-04-09T13:57:14Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/12203eng0148-296310.1016/j.jbusres.2016.02.010Moro, S.Rita, P.Vala, B.info:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-07-07T03:03:16Zoai:repositorio.iscte-iul.pt:10071/12203Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-07-07T03:03:16Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Predicting social media performance metrics and evaluation of the impact on brand building: a data mining approach
title Predicting social media performance metrics and evaluation of the impact on brand building: a data mining approach
spellingShingle Predicting social media performance metrics and evaluation of the impact on brand building: a data mining approach
Moro, S.
Social networks
Social media
Data mining
Knowledge extraction
Sensitivity analysis
Brand building
title_short Predicting social media performance metrics and evaluation of the impact on brand building: a data mining approach
title_full Predicting social media performance metrics and evaluation of the impact on brand building: a data mining approach
title_fullStr Predicting social media performance metrics and evaluation of the impact on brand building: a data mining approach
title_full_unstemmed Predicting social media performance metrics and evaluation of the impact on brand building: a data mining approach
title_sort Predicting social media performance metrics and evaluation of the impact on brand building: a data mining approach
author Moro, S.
author_facet Moro, S.
Rita, P.
Vala, B.
author_role author
author2 Rita, P.
Vala, B.
author2_role author
author
dc.contributor.author.fl_str_mv Moro, S.
Rita, P.
Vala, B.
dc.subject.por.fl_str_mv Social networks
Social media
Data mining
Knowledge extraction
Sensitivity analysis
Brand building
topic Social networks
Social media
Data mining
Knowledge extraction
Sensitivity analysis
Brand building
description This study presents a research approach using data mining for predicting the performance metrics of posts published in brands' Facebook pages. Twelve posts' performance metrics extracted from a cosmetic company's page including 790 publications were modeled, with the two best results achieving a mean absolute percentage error of around 27%. One of them, the "Lifetime Post Consumers" model, was assessed using sensitivity analysis to understand how each of the seven input features influenced it (category, page total likes, type, month, hour, weekday, paid). The type of content was considered the most relevant feature for the model, with a relevance of 36%. A status post captures around twice the attention of the remaining three types (link, photo, video). We have drawn a decision process flow from the "Lifetime Post Consumers" model, which by complementing the sensitivity analysis information may be used to support manager's decisions on whether to publish a post.
publishDate 2016
dc.date.none.fl_str_mv 2016-12-07T16:49:19Z
2016-01-01T00:00:00Z
2016
2019-04-09T13:57:14Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/12203
url http://hdl.handle.net/10071/12203
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0148-2963
10.1016/j.jbusres.2016.02.010
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817546385751277568