Discovering the optimal set of ratios to use in accounting-based models
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/28947 |
Resumo: | Ratios are the prime tool of financial analysis. In predictive modelling tasks, however, the use of ratios raises difficulties, the most obvious being that, in a multivariate setting, there is no guarantee that the collection of ratios eventually selected as predictors will be optimal in any sense. Using, as starting-point, a formal characterisation of cross-sectional accounting numbers, the paper shows how the multilayer perceptron can be trained to create internal representations which are an optimal set of ratios for a given modelling task. Experiments suggest that, when such ratios are utilised as predictors in well-known modelling tasks, performance improves on that reported by the extant literature. |
id |
RCAP_cbffbafca2fa106497822ac0f264199d |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/28947 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Discovering the optimal set of ratios to use in accounting-based modelsKnowledge extractionFinancial analysisFinancial ratiosFinancial technologyFintechAccounting modelsBankruptcy predictionFinancial misstatement detectionEarnings forecastingRatios are the prime tool of financial analysis. In predictive modelling tasks, however, the use of ratios raises difficulties, the most obvious being that, in a multivariate setting, there is no guarantee that the collection of ratios eventually selected as predictors will be optimal in any sense. Using, as starting-point, a formal characterisation of cross-sectional accounting numbers, the paper shows how the multilayer perceptron can be trained to create internal representations which are an optimal set of ratios for a given modelling task. Experiments suggest that, when such ratios are utilised as predictors in well-known modelling tasks, performance improves on that reported by the extant literature.Inderscience2023-07-06T07:58:42Z2018-01-01T00:00:00Z20182023-07-06T08:23:14Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/28947eng1756-251110.1504/IJSSS.2018.10013669Trigueiros, D.Sam, C.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:52:35Zoai:repositorio.iscte-iul.pt:10071/28947Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:26:13.517927Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Discovering the optimal set of ratios to use in accounting-based models |
title |
Discovering the optimal set of ratios to use in accounting-based models |
spellingShingle |
Discovering the optimal set of ratios to use in accounting-based models Trigueiros, D. Knowledge extraction Financial analysis Financial ratios Financial technology Fintech Accounting models Bankruptcy prediction Financial misstatement detection Earnings forecasting |
title_short |
Discovering the optimal set of ratios to use in accounting-based models |
title_full |
Discovering the optimal set of ratios to use in accounting-based models |
title_fullStr |
Discovering the optimal set of ratios to use in accounting-based models |
title_full_unstemmed |
Discovering the optimal set of ratios to use in accounting-based models |
title_sort |
Discovering the optimal set of ratios to use in accounting-based models |
author |
Trigueiros, D. |
author_facet |
Trigueiros, D. Sam, C. |
author_role |
author |
author2 |
Sam, C. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Trigueiros, D. Sam, C. |
dc.subject.por.fl_str_mv |
Knowledge extraction Financial analysis Financial ratios Financial technology Fintech Accounting models Bankruptcy prediction Financial misstatement detection Earnings forecasting |
topic |
Knowledge extraction Financial analysis Financial ratios Financial technology Fintech Accounting models Bankruptcy prediction Financial misstatement detection Earnings forecasting |
description |
Ratios are the prime tool of financial analysis. In predictive modelling tasks, however, the use of ratios raises difficulties, the most obvious being that, in a multivariate setting, there is no guarantee that the collection of ratios eventually selected as predictors will be optimal in any sense. Using, as starting-point, a formal characterisation of cross-sectional accounting numbers, the paper shows how the multilayer perceptron can be trained to create internal representations which are an optimal set of ratios for a given modelling task. Experiments suggest that, when such ratios are utilised as predictors in well-known modelling tasks, performance improves on that reported by the extant literature. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01-01T00:00:00Z 2018 2023-07-06T07:58:42Z 2023-07-06T08:23:14Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/28947 |
url |
http://hdl.handle.net/10071/28947 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1756-2511 10.1504/IJSSS.2018.10013669 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Inderscience |
publisher.none.fl_str_mv |
Inderscience |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134825300361216 |