Discovering the optimal set of ratios to use in accounting-based models

Detalhes bibliográficos
Autor(a) principal: Trigueiros, D.
Data de Publicação: 2018
Outros Autores: Sam, C.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/28947
Resumo: Ratios are the prime tool of financial analysis. In predictive modelling tasks, however, the use of ratios raises difficulties, the most obvious being that, in a multivariate setting, there is no guarantee that the collection of ratios eventually selected as predictors will be optimal in any sense. Using, as starting-point, a formal characterisation of cross-sectional accounting numbers, the paper shows how the multilayer perceptron can be trained to create internal representations which are an optimal set of ratios for a given modelling task. Experiments suggest that, when such ratios are utilised as predictors in well-known modelling tasks, performance improves on that reported by the extant literature.
id RCAP_cbffbafca2fa106497822ac0f264199d
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/28947
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Discovering the optimal set of ratios to use in accounting-based modelsKnowledge extractionFinancial analysisFinancial ratiosFinancial technologyFintechAccounting modelsBankruptcy predictionFinancial misstatement detectionEarnings forecastingRatios are the prime tool of financial analysis. In predictive modelling tasks, however, the use of ratios raises difficulties, the most obvious being that, in a multivariate setting, there is no guarantee that the collection of ratios eventually selected as predictors will be optimal in any sense. Using, as starting-point, a formal characterisation of cross-sectional accounting numbers, the paper shows how the multilayer perceptron can be trained to create internal representations which are an optimal set of ratios for a given modelling task. Experiments suggest that, when such ratios are utilised as predictors in well-known modelling tasks, performance improves on that reported by the extant literature.Inderscience2023-07-06T07:58:42Z2018-01-01T00:00:00Z20182023-07-06T08:23:14Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/28947eng1756-251110.1504/IJSSS.2018.10013669Trigueiros, D.Sam, C.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:52:35Zoai:repositorio.iscte-iul.pt:10071/28947Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:26:13.517927Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Discovering the optimal set of ratios to use in accounting-based models
title Discovering the optimal set of ratios to use in accounting-based models
spellingShingle Discovering the optimal set of ratios to use in accounting-based models
Trigueiros, D.
Knowledge extraction
Financial analysis
Financial ratios
Financial technology
Fintech
Accounting models
Bankruptcy prediction
Financial misstatement detection
Earnings forecasting
title_short Discovering the optimal set of ratios to use in accounting-based models
title_full Discovering the optimal set of ratios to use in accounting-based models
title_fullStr Discovering the optimal set of ratios to use in accounting-based models
title_full_unstemmed Discovering the optimal set of ratios to use in accounting-based models
title_sort Discovering the optimal set of ratios to use in accounting-based models
author Trigueiros, D.
author_facet Trigueiros, D.
Sam, C.
author_role author
author2 Sam, C.
author2_role author
dc.contributor.author.fl_str_mv Trigueiros, D.
Sam, C.
dc.subject.por.fl_str_mv Knowledge extraction
Financial analysis
Financial ratios
Financial technology
Fintech
Accounting models
Bankruptcy prediction
Financial misstatement detection
Earnings forecasting
topic Knowledge extraction
Financial analysis
Financial ratios
Financial technology
Fintech
Accounting models
Bankruptcy prediction
Financial misstatement detection
Earnings forecasting
description Ratios are the prime tool of financial analysis. In predictive modelling tasks, however, the use of ratios raises difficulties, the most obvious being that, in a multivariate setting, there is no guarantee that the collection of ratios eventually selected as predictors will be optimal in any sense. Using, as starting-point, a formal characterisation of cross-sectional accounting numbers, the paper shows how the multilayer perceptron can be trained to create internal representations which are an optimal set of ratios for a given modelling task. Experiments suggest that, when such ratios are utilised as predictors in well-known modelling tasks, performance improves on that reported by the extant literature.
publishDate 2018
dc.date.none.fl_str_mv 2018-01-01T00:00:00Z
2018
2023-07-06T07:58:42Z
2023-07-06T08:23:14Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/28947
url http://hdl.handle.net/10071/28947
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1756-2511
10.1504/IJSSS.2018.10013669
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Inderscience
publisher.none.fl_str_mv Inderscience
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134825300361216