Feasibility check for the distance geometry problem: an application to molecular conformations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/18405 |
Resumo: | The distance geometry problem (DGP) consists in finding an embedding in a metric space of a given weighted undirected graph such that for each edge in the graph, the corresponding distance in the embedding belongs to a given distance interval. We discuss the relationship between the existence of a graph embedding in a Euclidean space and the existence of a graph embedding in a lattice. Different approaches, including two integer programming (IP) models and a constraint programming (CP) approach, are presented to test the feasibility of the DGP. The two IP models are improved with the inclusion of valid inequalities, and the CP approach is improved using an algorithm to perform a domain reduction. The main motivation for this work is to derive new pruning devices within branch-and-prune algorithms for instances occurring in real applications related to determination of molecular conformations, which is a particular case of the DGP. A computational study based on a set of small-sized instances from molecular conformations is reported. This study compares the running times of the different approaches to check feasibility. |
id |
RCAP_cc5fd1f68265553cb708aae8356d9cee |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/18405 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Feasibility check for the distance geometry problem: an application to molecular conformationsDistance geometry problemGraph embeddingInteger programmingConstraint programmingThe distance geometry problem (DGP) consists in finding an embedding in a metric space of a given weighted undirected graph such that for each edge in the graph, the corresponding distance in the embedding belongs to a given distance interval. We discuss the relationship between the existence of a graph embedding in a Euclidean space and the existence of a graph embedding in a lattice. Different approaches, including two integer programming (IP) models and a constraint programming (CP) approach, are presented to test the feasibility of the DGP. The two IP models are improved with the inclusion of valid inequalities, and the CP approach is improved using an algorithm to perform a domain reduction. The main motivation for this work is to derive new pruning devices within branch-and-prune algorithms for instances occurring in real applications related to determination of molecular conformations, which is a particular case of the DGP. A computational study based on a set of small-sized instances from molecular conformations is reported. This study compares the running times of the different approaches to check feasibility.Wiley2017-092017-09-01T00:00:00Z2019-08-26T16:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/18405eng1475-399510.1111/itor.12283Agra, AgostinhoFigueiredo, RosaLavor, CarlileMaculan, NelsonPereira, AntónioRequejo, Cristinainfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:34:41Zoai:ria.ua.pt:10773/18405Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:53:02.928956Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Feasibility check for the distance geometry problem: an application to molecular conformations |
title |
Feasibility check for the distance geometry problem: an application to molecular conformations |
spellingShingle |
Feasibility check for the distance geometry problem: an application to molecular conformations Agra, Agostinho Distance geometry problem Graph embedding Integer programming Constraint programming |
title_short |
Feasibility check for the distance geometry problem: an application to molecular conformations |
title_full |
Feasibility check for the distance geometry problem: an application to molecular conformations |
title_fullStr |
Feasibility check for the distance geometry problem: an application to molecular conformations |
title_full_unstemmed |
Feasibility check for the distance geometry problem: an application to molecular conformations |
title_sort |
Feasibility check for the distance geometry problem: an application to molecular conformations |
author |
Agra, Agostinho |
author_facet |
Agra, Agostinho Figueiredo, Rosa Lavor, Carlile Maculan, Nelson Pereira, António Requejo, Cristina |
author_role |
author |
author2 |
Figueiredo, Rosa Lavor, Carlile Maculan, Nelson Pereira, António Requejo, Cristina |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Agra, Agostinho Figueiredo, Rosa Lavor, Carlile Maculan, Nelson Pereira, António Requejo, Cristina |
dc.subject.por.fl_str_mv |
Distance geometry problem Graph embedding Integer programming Constraint programming |
topic |
Distance geometry problem Graph embedding Integer programming Constraint programming |
description |
The distance geometry problem (DGP) consists in finding an embedding in a metric space of a given weighted undirected graph such that for each edge in the graph, the corresponding distance in the embedding belongs to a given distance interval. We discuss the relationship between the existence of a graph embedding in a Euclidean space and the existence of a graph embedding in a lattice. Different approaches, including two integer programming (IP) models and a constraint programming (CP) approach, are presented to test the feasibility of the DGP. The two IP models are improved with the inclusion of valid inequalities, and the CP approach is improved using an algorithm to perform a domain reduction. The main motivation for this work is to derive new pruning devices within branch-and-prune algorithms for instances occurring in real applications related to determination of molecular conformations, which is a particular case of the DGP. A computational study based on a set of small-sized instances from molecular conformations is reported. This study compares the running times of the different approaches to check feasibility. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-09 2017-09-01T00:00:00Z 2019-08-26T16:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/18405 |
url |
http://hdl.handle.net/10773/18405 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1475-3995 10.1111/itor.12283 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Wiley |
publisher.none.fl_str_mv |
Wiley |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137581641760768 |