A model to simulate the moment-rotation and crack width of FRC members reinforced with longitudinal bars
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/38784 |
Resumo: | The present work describes a model for the determination of the moment–rotation relationship of a cross section of fiber reinforced concrete (FRC) elements that also include longitudinal bars for the flexural reinforcement (R/FRC). Since a stress–crack width relationship (σ–w)(σ–w) is used to model the post-cracking behavior of a FRC, the σ–w directly obtained from tensile tests, or derived from inverse analysis applied to the results obtained in three-point notched beam bending tests, can be adopted in this approach. For a more realistic assessment of the crack opening, a bond stress versus slip relationship is assumed to simulate the bond between longitudinal bars and surrounding FRC. To simulate the compression behavior of the FRC, a shear friction model is adopted based on the physical interpretation of the post-peak compression softening behavior registered in experimental tests. By allowing the formation of a compressive FRC wedge delimited by shear band zones, the concept of concrete crushing failure mode in beams failing in bending is reinterpreted. By using the moment–rotation relationship, an algorithm was developed to determine the force–deflection response of statically determinate R/FRC elements. The model is described in detail and its good predictive performance is demonstrated by using available experimental data. Parametric studies were executed to evidence the influence of relevant parameters of the model on the serviceability and ultimate design conditions of R/FRC elements failing in bending. |
id |
RCAP_cc68a84ce449492cabbbeb0da996b3f0 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/38784 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A model to simulate the moment-rotation and crack width of FRC members reinforced with longitudinal barsFiber reinforced concreteLongitudinal steel barsMoment-rotation responseForce-deflection responseCrack widthScience & TechnologyThe present work describes a model for the determination of the moment–rotation relationship of a cross section of fiber reinforced concrete (FRC) elements that also include longitudinal bars for the flexural reinforcement (R/FRC). Since a stress–crack width relationship (σ–w)(σ–w) is used to model the post-cracking behavior of a FRC, the σ–w directly obtained from tensile tests, or derived from inverse analysis applied to the results obtained in three-point notched beam bending tests, can be adopted in this approach. For a more realistic assessment of the crack opening, a bond stress versus slip relationship is assumed to simulate the bond between longitudinal bars and surrounding FRC. To simulate the compression behavior of the FRC, a shear friction model is adopted based on the physical interpretation of the post-peak compression softening behavior registered in experimental tests. By allowing the formation of a compressive FRC wedge delimited by shear band zones, the concept of concrete crushing failure mode in beams failing in bending is reinterpreted. By using the moment–rotation relationship, an algorithm was developed to determine the force–deflection response of statically determinate R/FRC elements. The model is described in detail and its good predictive performance is demonstrated by using available experimental data. Parametric studies were executed to evidence the influence of relevant parameters of the model on the serviceability and ultimate design conditions of R/FRC elements failing in bending.This work is supported by FEDER funds through the Operational Programme for Competitiveness Factors – COMPETE and National Funds through FCT – Portuguese Foundation for Science and Technology under the project PTDC/ECM/105700/2008 – “DURCOST - Innovation in reinforcing systems for sustainable pre-fabricated structures of higher durability and enhanced structural performance”. The second and third author wish to acknowledge the grant provided by this project and FCT (SFRH/BD/71934/2010), respectively.ElsevierUniversidade do MinhoBarros, Joaquim A. O.Taheri, MahsaSalehian, Hamidreza20152015-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/38784eng0141-029610.1016/j.engstruct.2015.05.036info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:50:20Zoai:repositorium.sdum.uminho.pt:1822/38784Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:48:59.998614Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A model to simulate the moment-rotation and crack width of FRC members reinforced with longitudinal bars |
title |
A model to simulate the moment-rotation and crack width of FRC members reinforced with longitudinal bars |
spellingShingle |
A model to simulate the moment-rotation and crack width of FRC members reinforced with longitudinal bars Barros, Joaquim A. O. Fiber reinforced concrete Longitudinal steel bars Moment-rotation response Force-deflection response Crack width Science & Technology |
title_short |
A model to simulate the moment-rotation and crack width of FRC members reinforced with longitudinal bars |
title_full |
A model to simulate the moment-rotation and crack width of FRC members reinforced with longitudinal bars |
title_fullStr |
A model to simulate the moment-rotation and crack width of FRC members reinforced with longitudinal bars |
title_full_unstemmed |
A model to simulate the moment-rotation and crack width of FRC members reinforced with longitudinal bars |
title_sort |
A model to simulate the moment-rotation and crack width of FRC members reinforced with longitudinal bars |
author |
Barros, Joaquim A. O. |
author_facet |
Barros, Joaquim A. O. Taheri, Mahsa Salehian, Hamidreza |
author_role |
author |
author2 |
Taheri, Mahsa Salehian, Hamidreza |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Barros, Joaquim A. O. Taheri, Mahsa Salehian, Hamidreza |
dc.subject.por.fl_str_mv |
Fiber reinforced concrete Longitudinal steel bars Moment-rotation response Force-deflection response Crack width Science & Technology |
topic |
Fiber reinforced concrete Longitudinal steel bars Moment-rotation response Force-deflection response Crack width Science & Technology |
description |
The present work describes a model for the determination of the moment–rotation relationship of a cross section of fiber reinforced concrete (FRC) elements that also include longitudinal bars for the flexural reinforcement (R/FRC). Since a stress–crack width relationship (σ–w)(σ–w) is used to model the post-cracking behavior of a FRC, the σ–w directly obtained from tensile tests, or derived from inverse analysis applied to the results obtained in three-point notched beam bending tests, can be adopted in this approach. For a more realistic assessment of the crack opening, a bond stress versus slip relationship is assumed to simulate the bond between longitudinal bars and surrounding FRC. To simulate the compression behavior of the FRC, a shear friction model is adopted based on the physical interpretation of the post-peak compression softening behavior registered in experimental tests. By allowing the formation of a compressive FRC wedge delimited by shear band zones, the concept of concrete crushing failure mode in beams failing in bending is reinterpreted. By using the moment–rotation relationship, an algorithm was developed to determine the force–deflection response of statically determinate R/FRC elements. The model is described in detail and its good predictive performance is demonstrated by using available experimental data. Parametric studies were executed to evidence the influence of relevant parameters of the model on the serviceability and ultimate design conditions of R/FRC elements failing in bending. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015 2015-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/38784 |
url |
http://hdl.handle.net/1822/38784 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0141-0296 10.1016/j.engstruct.2015.05.036 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133069517520896 |