Testing Nelder-Mead Based Repulsion Algorithms for Multiple Roots of Nonlinear Systems via a Two-Level Factorial Design of Experiments
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/7435 |
Resumo: | This paper addresses the challenging task of computing multiple roots of a system of nonlinear equations. A repulsion algorithm that invokes the Nelder-Mead (N-M) local search method and uses a penalty-type merit function based on the error function, known as 'erf', is presented. In the N-M algorithm context, different strategies are proposed to enhance the quality of the solutions and improve the overall efficiency. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm. |
id |
RCAP_cc9c2b71006d29511c62cc7bf120d114 |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/7435 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Testing Nelder-Mead Based Repulsion Algorithms for Multiple Roots of Nonlinear Systems via a Two-Level Factorial Design of ExperimentsAlgorithmsNonlinear systemsExperimental designFactorial designAnalysis of varianceReflectionNeurophysiologyOptimizationThis paper addresses the challenging task of computing multiple roots of a system of nonlinear equations. A repulsion algorithm that invokes the Nelder-Mead (N-M) local search method and uses a penalty-type merit function based on the error function, known as 'erf', is presented. In the N-M algorithm context, different strategies are proposed to enhance the quality of the solutions and improve the overall efficiency. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm.PlosRepositório Científico do Instituto Politécnico do PortoRamadas, Gisela C. V.Rocha, Ana Maria A. C.Fernandes, Edite M. G. P.2016-01-21T09:50:53Z20152015-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/7435eng1932-620310.1371/journal.pone.0121844info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T12:48:02Zoai:recipp.ipp.pt:10400.22/7435Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:27:56.094883Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Testing Nelder-Mead Based Repulsion Algorithms for Multiple Roots of Nonlinear Systems via a Two-Level Factorial Design of Experiments |
title |
Testing Nelder-Mead Based Repulsion Algorithms for Multiple Roots of Nonlinear Systems via a Two-Level Factorial Design of Experiments |
spellingShingle |
Testing Nelder-Mead Based Repulsion Algorithms for Multiple Roots of Nonlinear Systems via a Two-Level Factorial Design of Experiments Ramadas, Gisela C. V. Algorithms Nonlinear systems Experimental design Factorial design Analysis of variance Reflection Neurophysiology Optimization |
title_short |
Testing Nelder-Mead Based Repulsion Algorithms for Multiple Roots of Nonlinear Systems via a Two-Level Factorial Design of Experiments |
title_full |
Testing Nelder-Mead Based Repulsion Algorithms for Multiple Roots of Nonlinear Systems via a Two-Level Factorial Design of Experiments |
title_fullStr |
Testing Nelder-Mead Based Repulsion Algorithms for Multiple Roots of Nonlinear Systems via a Two-Level Factorial Design of Experiments |
title_full_unstemmed |
Testing Nelder-Mead Based Repulsion Algorithms for Multiple Roots of Nonlinear Systems via a Two-Level Factorial Design of Experiments |
title_sort |
Testing Nelder-Mead Based Repulsion Algorithms for Multiple Roots of Nonlinear Systems via a Two-Level Factorial Design of Experiments |
author |
Ramadas, Gisela C. V. |
author_facet |
Ramadas, Gisela C. V. Rocha, Ana Maria A. C. Fernandes, Edite M. G. P. |
author_role |
author |
author2 |
Rocha, Ana Maria A. C. Fernandes, Edite M. G. P. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Ramadas, Gisela C. V. Rocha, Ana Maria A. C. Fernandes, Edite M. G. P. |
dc.subject.por.fl_str_mv |
Algorithms Nonlinear systems Experimental design Factorial design Analysis of variance Reflection Neurophysiology Optimization |
topic |
Algorithms Nonlinear systems Experimental design Factorial design Analysis of variance Reflection Neurophysiology Optimization |
description |
This paper addresses the challenging task of computing multiple roots of a system of nonlinear equations. A repulsion algorithm that invokes the Nelder-Mead (N-M) local search method and uses a penalty-type merit function based on the error function, known as 'erf', is presented. In the N-M algorithm context, different strategies are proposed to enhance the quality of the solutions and improve the overall efficiency. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015 2015-01-01T00:00:00Z 2016-01-21T09:50:53Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/7435 |
url |
http://hdl.handle.net/10400.22/7435 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1932-6203 10.1371/journal.pone.0121844 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Plos |
publisher.none.fl_str_mv |
Plos |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131375411920896 |