Categorified skew Howe duality and comparison of knot homologies

Detalhes bibliográficos
Autor(a) principal: Mackaay, Marco
Data de Publicação: 2018
Outros Autores: Webster, Ben
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.1/15104
Resumo: In this paper, we show an isomorphism of homological knot invariants categorifying the Reshetikhin-Turaev invariants for sl(n). Over the past decade, such invariants have been constructed in a variety of different ways, using matrix factorizations, category O, affine Grassmannians, and diagrammatic categorifications of tensor products. While the definitions of these theories are quite different, there is a key commonality between them which makes it possible to prove that they are all isomorphic: they arise from a skew Howe dual action of gl(l) for some l. In this paper, we show that the construction of knot homology based on categorifying tensor products (from earlier work of the second author) fits into this framework, and thus agrees with other such homologies, such as Khovanov-Rozansky homology. We accomplish this by categorifying the action of gl(l) x gl(n) on Lambda(P)(C-l circle times C-n) using diagrammatic bimodules. In this action, the functors corresponding to gl(l) and gl(n) are quite different in nature, but they will switch roles under Koszul duality.
id RCAP_cca66ac8de1a7c38efc4a3c2cbb39bd7
oai_identifier_str oai:sapientia.ualg.pt:10400.1/15104
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Categorified skew Howe duality and comparison of knot homologiesKnot homologyKhovanov homologyCategorical actionsWebsIn this paper, we show an isomorphism of homological knot invariants categorifying the Reshetikhin-Turaev invariants for sl(n). Over the past decade, such invariants have been constructed in a variety of different ways, using matrix factorizations, category O, affine Grassmannians, and diagrammatic categorifications of tensor products. While the definitions of these theories are quite different, there is a key commonality between them which makes it possible to prove that they are all isomorphic: they arise from a skew Howe dual action of gl(l) for some l. In this paper, we show that the construction of knot homology based on categorifying tensor products (from earlier work of the second author) fits into this framework, and thus agrees with other such homologies, such as Khovanov-Rozansky homology. We accomplish this by categorifying the action of gl(l) x gl(n) on Lambda(P)(C-l circle times C-n) using diagrammatic bimodules. In this action, the functors corresponding to gl(l) and gl(n) are quite different in nature, but they will switch roles under Koszul duality.ElsevierSapientiaMackaay, MarcoWebster, Ben2021-02-16T15:54:29Z20182018-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/15104eng0001-870810.1016/j.aim.2018.03.034info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-24T10:27:30Zoai:sapientia.ualg.pt:10400.1/15104Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:06:00.359777Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Categorified skew Howe duality and comparison of knot homologies
title Categorified skew Howe duality and comparison of knot homologies
spellingShingle Categorified skew Howe duality and comparison of knot homologies
Mackaay, Marco
Knot homology
Khovanov homology
Categorical actions
Webs
title_short Categorified skew Howe duality and comparison of knot homologies
title_full Categorified skew Howe duality and comparison of knot homologies
title_fullStr Categorified skew Howe duality and comparison of knot homologies
title_full_unstemmed Categorified skew Howe duality and comparison of knot homologies
title_sort Categorified skew Howe duality and comparison of knot homologies
author Mackaay, Marco
author_facet Mackaay, Marco
Webster, Ben
author_role author
author2 Webster, Ben
author2_role author
dc.contributor.none.fl_str_mv Sapientia
dc.contributor.author.fl_str_mv Mackaay, Marco
Webster, Ben
dc.subject.por.fl_str_mv Knot homology
Khovanov homology
Categorical actions
Webs
topic Knot homology
Khovanov homology
Categorical actions
Webs
description In this paper, we show an isomorphism of homological knot invariants categorifying the Reshetikhin-Turaev invariants for sl(n). Over the past decade, such invariants have been constructed in a variety of different ways, using matrix factorizations, category O, affine Grassmannians, and diagrammatic categorifications of tensor products. While the definitions of these theories are quite different, there is a key commonality between them which makes it possible to prove that they are all isomorphic: they arise from a skew Howe dual action of gl(l) for some l. In this paper, we show that the construction of knot homology based on categorifying tensor products (from earlier work of the second author) fits into this framework, and thus agrees with other such homologies, such as Khovanov-Rozansky homology. We accomplish this by categorifying the action of gl(l) x gl(n) on Lambda(P)(C-l circle times C-n) using diagrammatic bimodules. In this action, the functors corresponding to gl(l) and gl(n) are quite different in nature, but they will switch roles under Koszul duality.
publishDate 2018
dc.date.none.fl_str_mv 2018
2018-01-01T00:00:00Z
2021-02-16T15:54:29Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.1/15104
url http://hdl.handle.net/10400.1/15104
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0001-8708
10.1016/j.aim.2018.03.034
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133300707557376