Categorified skew Howe duality and comparison of knot homologies
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.1/15104 |
Resumo: | In this paper, we show an isomorphism of homological knot invariants categorifying the Reshetikhin-Turaev invariants for sl(n). Over the past decade, such invariants have been constructed in a variety of different ways, using matrix factorizations, category O, affine Grassmannians, and diagrammatic categorifications of tensor products. While the definitions of these theories are quite different, there is a key commonality between them which makes it possible to prove that they are all isomorphic: they arise from a skew Howe dual action of gl(l) for some l. In this paper, we show that the construction of knot homology based on categorifying tensor products (from earlier work of the second author) fits into this framework, and thus agrees with other such homologies, such as Khovanov-Rozansky homology. We accomplish this by categorifying the action of gl(l) x gl(n) on Lambda(P)(C-l circle times C-n) using diagrammatic bimodules. In this action, the functors corresponding to gl(l) and gl(n) are quite different in nature, but they will switch roles under Koszul duality. |
id |
RCAP_cca66ac8de1a7c38efc4a3c2cbb39bd7 |
---|---|
oai_identifier_str |
oai:sapientia.ualg.pt:10400.1/15104 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Categorified skew Howe duality and comparison of knot homologiesKnot homologyKhovanov homologyCategorical actionsWebsIn this paper, we show an isomorphism of homological knot invariants categorifying the Reshetikhin-Turaev invariants for sl(n). Over the past decade, such invariants have been constructed in a variety of different ways, using matrix factorizations, category O, affine Grassmannians, and diagrammatic categorifications of tensor products. While the definitions of these theories are quite different, there is a key commonality between them which makes it possible to prove that they are all isomorphic: they arise from a skew Howe dual action of gl(l) for some l. In this paper, we show that the construction of knot homology based on categorifying tensor products (from earlier work of the second author) fits into this framework, and thus agrees with other such homologies, such as Khovanov-Rozansky homology. We accomplish this by categorifying the action of gl(l) x gl(n) on Lambda(P)(C-l circle times C-n) using diagrammatic bimodules. In this action, the functors corresponding to gl(l) and gl(n) are quite different in nature, but they will switch roles under Koszul duality.ElsevierSapientiaMackaay, MarcoWebster, Ben2021-02-16T15:54:29Z20182018-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/15104eng0001-870810.1016/j.aim.2018.03.034info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-24T10:27:30Zoai:sapientia.ualg.pt:10400.1/15104Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:06:00.359777Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Categorified skew Howe duality and comparison of knot homologies |
title |
Categorified skew Howe duality and comparison of knot homologies |
spellingShingle |
Categorified skew Howe duality and comparison of knot homologies Mackaay, Marco Knot homology Khovanov homology Categorical actions Webs |
title_short |
Categorified skew Howe duality and comparison of knot homologies |
title_full |
Categorified skew Howe duality and comparison of knot homologies |
title_fullStr |
Categorified skew Howe duality and comparison of knot homologies |
title_full_unstemmed |
Categorified skew Howe duality and comparison of knot homologies |
title_sort |
Categorified skew Howe duality and comparison of knot homologies |
author |
Mackaay, Marco |
author_facet |
Mackaay, Marco Webster, Ben |
author_role |
author |
author2 |
Webster, Ben |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Sapientia |
dc.contributor.author.fl_str_mv |
Mackaay, Marco Webster, Ben |
dc.subject.por.fl_str_mv |
Knot homology Khovanov homology Categorical actions Webs |
topic |
Knot homology Khovanov homology Categorical actions Webs |
description |
In this paper, we show an isomorphism of homological knot invariants categorifying the Reshetikhin-Turaev invariants for sl(n). Over the past decade, such invariants have been constructed in a variety of different ways, using matrix factorizations, category O, affine Grassmannians, and diagrammatic categorifications of tensor products. While the definitions of these theories are quite different, there is a key commonality between them which makes it possible to prove that they are all isomorphic: they arise from a skew Howe dual action of gl(l) for some l. In this paper, we show that the construction of knot homology based on categorifying tensor products (from earlier work of the second author) fits into this framework, and thus agrees with other such homologies, such as Khovanov-Rozansky homology. We accomplish this by categorifying the action of gl(l) x gl(n) on Lambda(P)(C-l circle times C-n) using diagrammatic bimodules. In this action, the functors corresponding to gl(l) and gl(n) are quite different in nature, but they will switch roles under Koszul duality. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018 2018-01-01T00:00:00Z 2021-02-16T15:54:29Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.1/15104 |
url |
http://hdl.handle.net/10400.1/15104 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0001-8708 10.1016/j.aim.2018.03.034 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133300707557376 |