Unconventional structure and mechanisms for membrane interaction and translocation of the NF-κB-targeting toxin AIP56
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/10216/156278 |
Resumo: | Bacterial AB toxins are secreted key virulence factors that are internalized by target cells through receptor-mediated endocytosis, translocating their enzymatic domain to the cytosol from endosomes (short-trip) or the endoplasmic reticulum (long-trip). To accomplish this, bacterial AB toxins evolved a multidomain structure organized into either a single polypeptide chain or non-covalently associated polypeptide chains. The prototypical short-trip single-chain toxin is characterized by a receptor-binding domain that confers cellular specificity and a translocation domain responsible for pore formation whereby the catalytic domain translocates to the cytosol in an endosomal acidification-dependent way. In this work, the determination of the three-dimensional structure of AIP56 shows that, instead of a two-domain organization suggested by previous studies, AIP56 has three-domains: a non-LEE encoded effector C (NleC)-like catalytic domain associated with a small middle domain that contains the linker-peptide, followed by the receptor-binding domain. In contrast to prototypical single-chain AB toxins, AIP56 does not comprise a typical structurally complex translocation domain; instead, the elements involved in translocation are scattered across its domains. Thus, the catalytic domain contains a helical hairpin that serves as a molecular switch for triggering the conformational changes necessary for membrane insertion only upon endosomal acidification, whereas the middle and receptor-binding domains are required for pore formation. © 2023, The Author(s). |
id |
RCAP_ccaa14af1507910c8796034885ef622f |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/156278 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Unconventional structure and mechanisms for membrane interaction and translocation of the NF-κB-targeting toxin AIP56Bacterial AB toxins are secreted key virulence factors that are internalized by target cells through receptor-mediated endocytosis, translocating their enzymatic domain to the cytosol from endosomes (short-trip) or the endoplasmic reticulum (long-trip). To accomplish this, bacterial AB toxins evolved a multidomain structure organized into either a single polypeptide chain or non-covalently associated polypeptide chains. The prototypical short-trip single-chain toxin is characterized by a receptor-binding domain that confers cellular specificity and a translocation domain responsible for pore formation whereby the catalytic domain translocates to the cytosol in an endosomal acidification-dependent way. In this work, the determination of the three-dimensional structure of AIP56 shows that, instead of a two-domain organization suggested by previous studies, AIP56 has three-domains: a non-LEE encoded effector C (NleC)-like catalytic domain associated with a small middle domain that contains the linker-peptide, followed by the receptor-binding domain. In contrast to prototypical single-chain AB toxins, AIP56 does not comprise a typical structurally complex translocation domain; instead, the elements involved in translocation are scattered across its domains. Thus, the catalytic domain contains a helical hairpin that serves as a molecular switch for triggering the conformational changes necessary for membrane insertion only upon endosomal acidification, whereas the middle and receptor-binding domains are required for pore formation. © 2023, The Author(s).Nature Research20232023-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/156278eng2041-172310.1038/s41467-023-43054-zLisboa, JPereira, CPinto, RDRodrigues, ISPereira, LMGPinheiro, BOliveira, PPereira, PJBAzevedo, JEDurand, DBenz, Rdo Vale, Ados Santos, NMSinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-12T01:26:41Zoai:repositorio-aberto.up.pt:10216/156278Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:35:56.378140Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Unconventional structure and mechanisms for membrane interaction and translocation of the NF-κB-targeting toxin AIP56 |
title |
Unconventional structure and mechanisms for membrane interaction and translocation of the NF-κB-targeting toxin AIP56 |
spellingShingle |
Unconventional structure and mechanisms for membrane interaction and translocation of the NF-κB-targeting toxin AIP56 Lisboa, J |
title_short |
Unconventional structure and mechanisms for membrane interaction and translocation of the NF-κB-targeting toxin AIP56 |
title_full |
Unconventional structure and mechanisms for membrane interaction and translocation of the NF-κB-targeting toxin AIP56 |
title_fullStr |
Unconventional structure and mechanisms for membrane interaction and translocation of the NF-κB-targeting toxin AIP56 |
title_full_unstemmed |
Unconventional structure and mechanisms for membrane interaction and translocation of the NF-κB-targeting toxin AIP56 |
title_sort |
Unconventional structure and mechanisms for membrane interaction and translocation of the NF-κB-targeting toxin AIP56 |
author |
Lisboa, J |
author_facet |
Lisboa, J Pereira, C Pinto, RD Rodrigues, IS Pereira, LMG Pinheiro, B Oliveira, P Pereira, PJB Azevedo, JE Durand, D Benz, R do Vale, A dos Santos, NMS |
author_role |
author |
author2 |
Pereira, C Pinto, RD Rodrigues, IS Pereira, LMG Pinheiro, B Oliveira, P Pereira, PJB Azevedo, JE Durand, D Benz, R do Vale, A dos Santos, NMS |
author2_role |
author author author author author author author author author author author author |
dc.contributor.author.fl_str_mv |
Lisboa, J Pereira, C Pinto, RD Rodrigues, IS Pereira, LMG Pinheiro, B Oliveira, P Pereira, PJB Azevedo, JE Durand, D Benz, R do Vale, A dos Santos, NMS |
description |
Bacterial AB toxins are secreted key virulence factors that are internalized by target cells through receptor-mediated endocytosis, translocating their enzymatic domain to the cytosol from endosomes (short-trip) or the endoplasmic reticulum (long-trip). To accomplish this, bacterial AB toxins evolved a multidomain structure organized into either a single polypeptide chain or non-covalently associated polypeptide chains. The prototypical short-trip single-chain toxin is characterized by a receptor-binding domain that confers cellular specificity and a translocation domain responsible for pore formation whereby the catalytic domain translocates to the cytosol in an endosomal acidification-dependent way. In this work, the determination of the three-dimensional structure of AIP56 shows that, instead of a two-domain organization suggested by previous studies, AIP56 has three-domains: a non-LEE encoded effector C (NleC)-like catalytic domain associated with a small middle domain that contains the linker-peptide, followed by the receptor-binding domain. In contrast to prototypical single-chain AB toxins, AIP56 does not comprise a typical structurally complex translocation domain; instead, the elements involved in translocation are scattered across its domains. Thus, the catalytic domain contains a helical hairpin that serves as a molecular switch for triggering the conformational changes necessary for membrane insertion only upon endosomal acidification, whereas the middle and receptor-binding domains are required for pore formation. © 2023, The Author(s). |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023 2023-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/156278 |
url |
https://hdl.handle.net/10216/156278 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2041-1723 10.1038/s41467-023-43054-z |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Nature Research |
publisher.none.fl_str_mv |
Nature Research |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136834957082624 |