Formulations of the inclusion–exclusion principle from Legendre to Poincaré, with emphasis on Daniel Augusto da Silva
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.19/7763 |
Resumo: | The inclusion–exclusion principle is a simple, intuitive, and extremely versatile result. It is one of the most useful methods for counting and it can be used in different areas of mathematics. In the eighteenth century, the first uses of this result that appear in the literature are related to the study of problems of games of chance. However, the first formulations of this principle appear, independently by several authors, only in the nineteenth century. In this article, we study the formulations obtained by Adrien-Marie Legendre, Daniel Augusto da Silva, James Joseph Sylvester, and Henri Poincaré. We highlight the contribution of the Portuguese mathematician Daniel Augusto da Silva, since his formulation can be applied to different problems of number theory, whenever collections of numbers satisfying certain properties are involved, and this is the reason why his formulation stands out compared with all the others. |
id |
RCAP_cd67835e4ca24d2c7e0a186f0164f366 |
---|---|
oai_identifier_str |
oai:repositorio.ipv.pt:10400.19/7763 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Formulations of the inclusion–exclusion principle from Legendre to Poincaré, with emphasis on Daniel Augusto da SilvaThe inclusion–exclusion principle is a simple, intuitive, and extremely versatile result. It is one of the most useful methods for counting and it can be used in different areas of mathematics. In the eighteenth century, the first uses of this result that appear in the literature are related to the study of problems of games of chance. However, the first formulations of this principle appear, independently by several authors, only in the nineteenth century. In this article, we study the formulations obtained by Adrien-Marie Legendre, Daniel Augusto da Silva, James Joseph Sylvester, and Henri Poincaré. We highlight the contribution of the Portuguese mathematician Daniel Augusto da Silva, since his formulation can be applied to different problems of number theory, whenever collections of numbers satisfying certain properties are involved, and this is the reason why his formulation stands out compared with all the others.Repositório Científico do Instituto Politécnico de Viseumartins, ana patríciaSousa, Teresa2023-04-19T14:36:42Z20222022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.19/7763eng10.1080/26375451.2022.2082158info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-04-22T02:31:11Zoai:repositorio.ipv.pt:10400.19/7763Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:50:04.429459Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Formulations of the inclusion–exclusion principle from Legendre to Poincaré, with emphasis on Daniel Augusto da Silva |
title |
Formulations of the inclusion–exclusion principle from Legendre to Poincaré, with emphasis on Daniel Augusto da Silva |
spellingShingle |
Formulations of the inclusion–exclusion principle from Legendre to Poincaré, with emphasis on Daniel Augusto da Silva martins, ana patrícia |
title_short |
Formulations of the inclusion–exclusion principle from Legendre to Poincaré, with emphasis on Daniel Augusto da Silva |
title_full |
Formulations of the inclusion–exclusion principle from Legendre to Poincaré, with emphasis on Daniel Augusto da Silva |
title_fullStr |
Formulations of the inclusion–exclusion principle from Legendre to Poincaré, with emphasis on Daniel Augusto da Silva |
title_full_unstemmed |
Formulations of the inclusion–exclusion principle from Legendre to Poincaré, with emphasis on Daniel Augusto da Silva |
title_sort |
Formulations of the inclusion–exclusion principle from Legendre to Poincaré, with emphasis on Daniel Augusto da Silva |
author |
martins, ana patrícia |
author_facet |
martins, ana patrícia Sousa, Teresa |
author_role |
author |
author2 |
Sousa, Teresa |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico de Viseu |
dc.contributor.author.fl_str_mv |
martins, ana patrícia Sousa, Teresa |
description |
The inclusion–exclusion principle is a simple, intuitive, and extremely versatile result. It is one of the most useful methods for counting and it can be used in different areas of mathematics. In the eighteenth century, the first uses of this result that appear in the literature are related to the study of problems of games of chance. However, the first formulations of this principle appear, independently by several authors, only in the nineteenth century. In this article, we study the formulations obtained by Adrien-Marie Legendre, Daniel Augusto da Silva, James Joseph Sylvester, and Henri Poincaré. We highlight the contribution of the Portuguese mathematician Daniel Augusto da Silva, since his formulation can be applied to different problems of number theory, whenever collections of numbers satisfying certain properties are involved, and this is the reason why his formulation stands out compared with all the others. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022 2022-01-01T00:00:00Z 2023-04-19T14:36:42Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.19/7763 |
url |
http://hdl.handle.net/10400.19/7763 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1080/26375451.2022.2082158 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131581027188736 |