Distributed control and communication for UAVs

Detalhes bibliográficos
Autor(a) principal: Silva, Rui Emanuel Simões da
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/34069
Resumo: Drones have been more popular in recent years due to lower prices and a wider range of use cases. They can be used for various purposes, including recreation and more specific activities such as forest monitoring, agriculture, and even in the event of a natural disaster. They are the ideal tool to assist or even substitute a human due to their tiny size, quick deployment and mobility. Autopilots were designed to allow drones to carry out missions without the need for human control. Many different tools have been developed to manage a fleet of drones by tracking their movements and sending instructions. A new approach to these tools has been presented in this Dissertation. Typically, the architectures developed are more centralized, meaning that the drones are always under the control of a ground station. Instead, we devised a method for drones to communicate with one another and make decisions based on real-time data collected during missions, even when they are out of range of the ground station. This was accomplished by creating two separate modules, one for the drones and the other for the ground station. The drone module executes missions, monitoring telemetry and network connectivity with the rest of the fleet, while the ground station module retrieves telemetry from the drones and manages the available drones to perform missions. We have created a method of extending the maximum network range of the platform through relay drones activated through a change on the network metrics. We also devised a method to integrate Android devices into the platform. For example, a person could request a drone using an Android application by placing the order and providing its location. Everything we developed was tested step by step to validate the performed work. First we used simulation tools to verify the work locally before moving on to real hardware testing using physical drones in a real environment, with single drones first, and then with multiple drones in cooperation.
id RCAP_cd7955933ff0edfda850820bf92e1610
oai_identifier_str oai:ria.ua.pt:10773/34069
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Distributed control and communication for UAVsDronesMissionsFleet managementDecentralizationNetworkAndroidDrones have been more popular in recent years due to lower prices and a wider range of use cases. They can be used for various purposes, including recreation and more specific activities such as forest monitoring, agriculture, and even in the event of a natural disaster. They are the ideal tool to assist or even substitute a human due to their tiny size, quick deployment and mobility. Autopilots were designed to allow drones to carry out missions without the need for human control. Many different tools have been developed to manage a fleet of drones by tracking their movements and sending instructions. A new approach to these tools has been presented in this Dissertation. Typically, the architectures developed are more centralized, meaning that the drones are always under the control of a ground station. Instead, we devised a method for drones to communicate with one another and make decisions based on real-time data collected during missions, even when they are out of range of the ground station. This was accomplished by creating two separate modules, one for the drones and the other for the ground station. The drone module executes missions, monitoring telemetry and network connectivity with the rest of the fleet, while the ground station module retrieves telemetry from the drones and manages the available drones to perform missions. We have created a method of extending the maximum network range of the platform through relay drones activated through a change on the network metrics. We also devised a method to integrate Android devices into the platform. For example, a person could request a drone using an Android application by placing the order and providing its location. Everything we developed was tested step by step to validate the performed work. First we used simulation tools to verify the work locally before moving on to real hardware testing using physical drones in a real environment, with single drones first, and then with multiple drones in cooperation.Os drones têm-se tornado mais populares nos últimos anos devido a uma diminuição de custos e a uma gama mais ampla de casos de uso. Podem ser usados para vários fins, incluindo recreação e atividades mais específicas, como monitorização de florestas, agricultura e até mesmo no caso de um desastre natural. São a ferramenta ideal para auxiliar ou até mesmo substituir um ser humano devido ao seu tamanho minúsculo, facilidade de utilização e mobilidade. Os pilotos automáticos foram projetados para permitir que os drones realizem missões sem a necessidade de controlo humano. Muitas ferramentas diferentes foram desenvolvidas para gerir uma frota de drones, seguindo os seus movimentos e enviando instruções. Uma nova abordagem para estas ferramentas foi apresentada nesta Dissertação. Normalmente, as arquiteturas desenvolvidas são mais centralizadas, o que significa que os drones estão sempre sob o comando de uma estação terrestre. Em vez disso, desenvolvemos um método para que os drones comuniquem uns com os outros e tomem decisões com base em dados em tempo real recolhidos durante as missões, mesmo quando estão fora do alcance da estação terrestre. Isso foi feito criando dois módulos separados, um para os drones e outro para a estação terrestre. O módulo dos drones executa missões, monitorizando a telemetria e a conectividade de rede com o resto da frota, enquanto o módulo da estação terrestre recolhe a telemetria dos drones e gere os drones disponíveis para realizar as missões. Criámos um método para aumentar o alcance máximo da rede da plataforma por meio de drones de retransmissão ativados de acordo com as métricas de rede. Também desenvolvemos um método para integrar dispositivos Android na plataforma. Por exemplo, uma pessoa pode pedir um drone usando uma aplicação em Android, efetuando o pedido e fornecendo a sua localização. Tudo o que desenvolvemos foi testado passo a passo para validar o trabalho realizado. Primeiro usámos ferramentas de simulação para verificar o trabalho localmente antes de passar para os testes em hardware real usando drones físicos num ambiente real, com um único drone primeiro e depois com vários drones em cooperação.2023-01-04T00:00:00Z2021-12-22T00:00:00Z2021-12-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/34069engSilva, Rui Emanuel Simões dainfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:05:39Zoai:ria.ua.pt:10773/34069Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:05:25.872212Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Distributed control and communication for UAVs
title Distributed control and communication for UAVs
spellingShingle Distributed control and communication for UAVs
Silva, Rui Emanuel Simões da
Drones
Missions
Fleet management
Decentralization
Network
Android
title_short Distributed control and communication for UAVs
title_full Distributed control and communication for UAVs
title_fullStr Distributed control and communication for UAVs
title_full_unstemmed Distributed control and communication for UAVs
title_sort Distributed control and communication for UAVs
author Silva, Rui Emanuel Simões da
author_facet Silva, Rui Emanuel Simões da
author_role author
dc.contributor.author.fl_str_mv Silva, Rui Emanuel Simões da
dc.subject.por.fl_str_mv Drones
Missions
Fleet management
Decentralization
Network
Android
topic Drones
Missions
Fleet management
Decentralization
Network
Android
description Drones have been more popular in recent years due to lower prices and a wider range of use cases. They can be used for various purposes, including recreation and more specific activities such as forest monitoring, agriculture, and even in the event of a natural disaster. They are the ideal tool to assist or even substitute a human due to their tiny size, quick deployment and mobility. Autopilots were designed to allow drones to carry out missions without the need for human control. Many different tools have been developed to manage a fleet of drones by tracking their movements and sending instructions. A new approach to these tools has been presented in this Dissertation. Typically, the architectures developed are more centralized, meaning that the drones are always under the control of a ground station. Instead, we devised a method for drones to communicate with one another and make decisions based on real-time data collected during missions, even when they are out of range of the ground station. This was accomplished by creating two separate modules, one for the drones and the other for the ground station. The drone module executes missions, monitoring telemetry and network connectivity with the rest of the fleet, while the ground station module retrieves telemetry from the drones and manages the available drones to perform missions. We have created a method of extending the maximum network range of the platform through relay drones activated through a change on the network metrics. We also devised a method to integrate Android devices into the platform. For example, a person could request a drone using an Android application by placing the order and providing its location. Everything we developed was tested step by step to validate the performed work. First we used simulation tools to verify the work locally before moving on to real hardware testing using physical drones in a real environment, with single drones first, and then with multiple drones in cooperation.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-22T00:00:00Z
2021-12-22
2023-01-04T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/34069
url http://hdl.handle.net/10773/34069
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137709458980864