A semi-supervised learning approach for automatic personality classification based on acoustic-prosodic cues
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://doi.org/10.26334/2183-9077/rapln5ano2019a23 |
Resumo: | Automatic personality analysis has gained great attention in the last years as a fundamental dimension in human-machine interactions. However, the development of this technology in some domains, such as the classification of children’s personality, has been hindered by the limited number and size of the available speech corpora due to ethical concerns on collecting such corpora. To circumvent the lack of data, we have investigated the application of a semi-supervised training approach that makes use of heterogeneous (age and language mismatches) and partially non-labelled data sets. Namely, preliminary personality models trained using a small labelled data set with French speaking adults are iteratively refined using a larger unlabeled set of Portuguese children’s speech, whereas a labelled corpus of Portuguese children is used for evaluation. We also investigated speech representations based on prior linguistic knowledge on acoustic-prosodic clues for personality classification tasks and have analysed their relevance in the assessment of each personality trait. The results point out to the potential of applying semi-supervised learning approaches with heterogeneous data sets to overcome the lack of labelled data in under-resourced domains, and to the existence of acousticprosodic clues shared by speakers with different languages and ages, which allows for the classification of personality independently of these variables. |
id |
RCAP_cda8669bd9b8412245801b9df4f58d59 |
---|---|
oai_identifier_str |
oai:ojs3.ojs.apl.pt:article/21 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A semi-supervised learning approach for automatic personality classification based on acoustic-prosodic cuesUma abordagem de aprendizagem semissupervisionada para a classificação automática de personalidade baseada em pistas acústico-prosódicasanálise paralinguística computacionalclassificação automática de personalidadelínguas distintasfaixas etárias diferentespistas acústico-prosódicascomputational paralinguisticscross-languagecross-ageacoustic-prosodic featuresautomatic personality classificationAutomatic personality analysis has gained great attention in the last years as a fundamental dimension in human-machine interactions. However, the development of this technology in some domains, such as the classification of children’s personality, has been hindered by the limited number and size of the available speech corpora due to ethical concerns on collecting such corpora. To circumvent the lack of data, we have investigated the application of a semi-supervised training approach that makes use of heterogeneous (age and language mismatches) and partially non-labelled data sets. Namely, preliminary personality models trained using a small labelled data set with French speaking adults are iteratively refined using a larger unlabeled set of Portuguese children’s speech, whereas a labelled corpus of Portuguese children is used for evaluation. We also investigated speech representations based on prior linguistic knowledge on acoustic-prosodic clues for personality classification tasks and have analysed their relevance in the assessment of each personality trait. The results point out to the potential of applying semi-supervised learning approaches with heterogeneous data sets to overcome the lack of labelled data in under-resourced domains, and to the existence of acousticprosodic clues shared by speakers with different languages and ages, which allows for the classification of personality independently of these variables.Associação Portuguesa de Linguística2019-11-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://doi.org/10.26334/2183-9077/rapln5ano2019a23https://doi.org/10.26334/2183-9077/rapln5ano2019a23Revista da Associação Portuguesa de Linguística; No. 5 (2019): Journal of the Portuguese Linguistics Association; 348-364Revista da Associação Portuguesa de Linguística; N.º 5 (2019): Revista da Associação Portuguesa de Linguística; 348-3642183-9077reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAPporhttps://ojs.apl.pt/index.php/rapl/article/view/21https://ojs.apl.pt/index.php/rapl/article/view/21/10Direitos de Autor (c) 2019 Rubén-Solera-Ureña, Helena Moniz, Fernando Batista, Vera Cabarrão, Anna Pompili, Ramón Fernández-Astudillo, Isabel Trancosoinfo:eu-repo/semantics/openAccessSolera-Ureña, RubénMoniz, HelenaBatista, FernandoCabarrão, VeraPompili, AnnaFernández-Astudillo, RamónTrancoso, Isabel2023-12-02T10:17:19Zoai:ojs3.ojs.apl.pt:article/21Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:35:56.926031Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A semi-supervised learning approach for automatic personality classification based on acoustic-prosodic cues Uma abordagem de aprendizagem semissupervisionada para a classificação automática de personalidade baseada em pistas acústico-prosódicas |
title |
A semi-supervised learning approach for automatic personality classification based on acoustic-prosodic cues |
spellingShingle |
A semi-supervised learning approach for automatic personality classification based on acoustic-prosodic cues Solera-Ureña, Rubén análise paralinguística computacional classificação automática de personalidade línguas distintas faixas etárias diferentes pistas acústico-prosódicas computational paralinguistics cross-language cross-age acoustic-prosodic features automatic personality classification |
title_short |
A semi-supervised learning approach for automatic personality classification based on acoustic-prosodic cues |
title_full |
A semi-supervised learning approach for automatic personality classification based on acoustic-prosodic cues |
title_fullStr |
A semi-supervised learning approach for automatic personality classification based on acoustic-prosodic cues |
title_full_unstemmed |
A semi-supervised learning approach for automatic personality classification based on acoustic-prosodic cues |
title_sort |
A semi-supervised learning approach for automatic personality classification based on acoustic-prosodic cues |
author |
Solera-Ureña, Rubén |
author_facet |
Solera-Ureña, Rubén Moniz, Helena Batista, Fernando Cabarrão, Vera Pompili, Anna Fernández-Astudillo, Ramón Trancoso, Isabel |
author_role |
author |
author2 |
Moniz, Helena Batista, Fernando Cabarrão, Vera Pompili, Anna Fernández-Astudillo, Ramón Trancoso, Isabel |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Solera-Ureña, Rubén Moniz, Helena Batista, Fernando Cabarrão, Vera Pompili, Anna Fernández-Astudillo, Ramón Trancoso, Isabel |
dc.subject.por.fl_str_mv |
análise paralinguística computacional classificação automática de personalidade línguas distintas faixas etárias diferentes pistas acústico-prosódicas computational paralinguistics cross-language cross-age acoustic-prosodic features automatic personality classification |
topic |
análise paralinguística computacional classificação automática de personalidade línguas distintas faixas etárias diferentes pistas acústico-prosódicas computational paralinguistics cross-language cross-age acoustic-prosodic features automatic personality classification |
description |
Automatic personality analysis has gained great attention in the last years as a fundamental dimension in human-machine interactions. However, the development of this technology in some domains, such as the classification of children’s personality, has been hindered by the limited number and size of the available speech corpora due to ethical concerns on collecting such corpora. To circumvent the lack of data, we have investigated the application of a semi-supervised training approach that makes use of heterogeneous (age and language mismatches) and partially non-labelled data sets. Namely, preliminary personality models trained using a small labelled data set with French speaking adults are iteratively refined using a larger unlabeled set of Portuguese children’s speech, whereas a labelled corpus of Portuguese children is used for evaluation. We also investigated speech representations based on prior linguistic knowledge on acoustic-prosodic clues for personality classification tasks and have analysed their relevance in the assessment of each personality trait. The results point out to the potential of applying semi-supervised learning approaches with heterogeneous data sets to overcome the lack of labelled data in under-resourced domains, and to the existence of acousticprosodic clues shared by speakers with different languages and ages, which allows for the classification of personality independently of these variables. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-11-21 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://doi.org/10.26334/2183-9077/rapln5ano2019a23 https://doi.org/10.26334/2183-9077/rapln5ano2019a23 |
url |
https://doi.org/10.26334/2183-9077/rapln5ano2019a23 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://ojs.apl.pt/index.php/rapl/article/view/21 https://ojs.apl.pt/index.php/rapl/article/view/21/10 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Associação Portuguesa de Linguística |
publisher.none.fl_str_mv |
Associação Portuguesa de Linguística |
dc.source.none.fl_str_mv |
Revista da Associação Portuguesa de Linguística; No. 5 (2019): Journal of the Portuguese Linguistics Association; 348-364 Revista da Associação Portuguesa de Linguística; N.º 5 (2019): Revista da Associação Portuguesa de Linguística; 348-364 2183-9077 reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133622628777984 |