A semi-supervised learning approach for automatic personality classification based on acoustic-prosodic cues

Detalhes bibliográficos
Autor(a) principal: Solera-Ureña, Rubén
Data de Publicação: 2019
Outros Autores: Moniz, Helena, Batista, Fernando, Cabarrão, Vera, Pompili, Anna, Fernández-Astudillo, Ramón, Trancoso, Isabel
Tipo de documento: Artigo
Idioma: por
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://doi.org/10.26334/2183-9077/rapln5ano2019a23
Resumo: Automatic personality analysis has gained great attention in the last years as a fundamental dimension in human-machine interactions. However, the development of this technology in some domains, such as the classification of children’s personality, has been hindered by the limited number and size of the available speech corpora due to ethical concerns on collecting such corpora. To circumvent the lack of data, we have investigated the application of a semi-supervised training approach that makes use of heterogeneous (age and language mismatches) and partially non-labelled data sets. Namely, preliminary personality models trained using a small labelled data set with French speaking adults are iteratively refined using a larger unlabeled set of Portuguese children’s speech, whereas a labelled corpus of Portuguese children is used for evaluation. We also investigated speech representations based on prior linguistic knowledge on acoustic-prosodic clues for personality classification tasks and have analysed their relevance in the assessment of each personality trait. The results point out to the potential of applying semi-supervised learning approaches with heterogeneous data sets to overcome the lack of labelled data in under-resourced domains, and to the existence of acousticprosodic clues shared by speakers with different languages and ages, which allows for the classification of personality independently of these variables.
id RCAP_cda8669bd9b8412245801b9df4f58d59
oai_identifier_str oai:ojs3.ojs.apl.pt:article/21
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A semi-supervised learning approach for automatic personality classification based on acoustic-prosodic cuesUma abordagem de aprendizagem semissupervisionada para a classificação automática de personalidade baseada em pistas acústico-prosódicasanálise paralinguística computacionalclassificação automática de personalidadelínguas distintasfaixas etárias diferentespistas acústico-prosódicascomputational paralinguisticscross-languagecross-ageacoustic-prosodic featuresautomatic personality classificationAutomatic personality analysis has gained great attention in the last years as a fundamental dimension in human-machine interactions. However, the development of this technology in some domains, such as the classification of children’s personality, has been hindered by the limited number and size of the available speech corpora due to ethical concerns on collecting such corpora. To circumvent the lack of data, we have investigated the application of a semi-supervised training approach that makes use of heterogeneous (age and language mismatches) and partially non-labelled data sets. Namely, preliminary personality models trained using a small labelled data set with French speaking adults are iteratively refined using a larger unlabeled set of Portuguese children’s speech, whereas a labelled corpus of Portuguese children is used for evaluation. We also investigated speech representations based on prior linguistic knowledge on acoustic-prosodic clues for personality classification tasks and have analysed their relevance in the assessment of each personality trait. The results point out to the potential of applying semi-supervised learning approaches with heterogeneous data sets to overcome the lack of labelled data in under-resourced domains, and to the existence of acousticprosodic clues shared by speakers with different languages and ages, which allows for the classification of personality independently of these variables.Associação Portuguesa de Linguística2019-11-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://doi.org/10.26334/2183-9077/rapln5ano2019a23https://doi.org/10.26334/2183-9077/rapln5ano2019a23Revista da Associação Portuguesa de Linguística; No. 5 (2019): Journal of the Portuguese Linguistics Association; 348-364Revista da Associação Portuguesa de Linguística; N.º 5 (2019): Revista da Associação Portuguesa de Linguística; 348-3642183-9077reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAPporhttps://ojs.apl.pt/index.php/rapl/article/view/21https://ojs.apl.pt/index.php/rapl/article/view/21/10Direitos de Autor (c) 2019 Rubén-Solera-Ureña, Helena Moniz, Fernando Batista, Vera Cabarrão, Anna Pompili, Ramón Fernández-Astudillo, Isabel Trancosoinfo:eu-repo/semantics/openAccessSolera-Ureña, RubénMoniz, HelenaBatista, FernandoCabarrão, VeraPompili, AnnaFernández-Astudillo, RamónTrancoso, Isabel2023-12-02T10:17:19Zoai:ojs3.ojs.apl.pt:article/21Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:35:56.926031Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A semi-supervised learning approach for automatic personality classification based on acoustic-prosodic cues
Uma abordagem de aprendizagem semissupervisionada para a classificação automática de personalidade baseada em pistas acústico-prosódicas
title A semi-supervised learning approach for automatic personality classification based on acoustic-prosodic cues
spellingShingle A semi-supervised learning approach for automatic personality classification based on acoustic-prosodic cues
Solera-Ureña, Rubén
análise paralinguística computacional
classificação automática de personalidade
línguas distintas
faixas etárias diferentes
pistas acústico-prosódicas
computational paralinguistics
cross-language
cross-age
acoustic-prosodic features
automatic personality classification
title_short A semi-supervised learning approach for automatic personality classification based on acoustic-prosodic cues
title_full A semi-supervised learning approach for automatic personality classification based on acoustic-prosodic cues
title_fullStr A semi-supervised learning approach for automatic personality classification based on acoustic-prosodic cues
title_full_unstemmed A semi-supervised learning approach for automatic personality classification based on acoustic-prosodic cues
title_sort A semi-supervised learning approach for automatic personality classification based on acoustic-prosodic cues
author Solera-Ureña, Rubén
author_facet Solera-Ureña, Rubén
Moniz, Helena
Batista, Fernando
Cabarrão, Vera
Pompili, Anna
Fernández-Astudillo, Ramón
Trancoso, Isabel
author_role author
author2 Moniz, Helena
Batista, Fernando
Cabarrão, Vera
Pompili, Anna
Fernández-Astudillo, Ramón
Trancoso, Isabel
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Solera-Ureña, Rubén
Moniz, Helena
Batista, Fernando
Cabarrão, Vera
Pompili, Anna
Fernández-Astudillo, Ramón
Trancoso, Isabel
dc.subject.por.fl_str_mv análise paralinguística computacional
classificação automática de personalidade
línguas distintas
faixas etárias diferentes
pistas acústico-prosódicas
computational paralinguistics
cross-language
cross-age
acoustic-prosodic features
automatic personality classification
topic análise paralinguística computacional
classificação automática de personalidade
línguas distintas
faixas etárias diferentes
pistas acústico-prosódicas
computational paralinguistics
cross-language
cross-age
acoustic-prosodic features
automatic personality classification
description Automatic personality analysis has gained great attention in the last years as a fundamental dimension in human-machine interactions. However, the development of this technology in some domains, such as the classification of children’s personality, has been hindered by the limited number and size of the available speech corpora due to ethical concerns on collecting such corpora. To circumvent the lack of data, we have investigated the application of a semi-supervised training approach that makes use of heterogeneous (age and language mismatches) and partially non-labelled data sets. Namely, preliminary personality models trained using a small labelled data set with French speaking adults are iteratively refined using a larger unlabeled set of Portuguese children’s speech, whereas a labelled corpus of Portuguese children is used for evaluation. We also investigated speech representations based on prior linguistic knowledge on acoustic-prosodic clues for personality classification tasks and have analysed their relevance in the assessment of each personality trait. The results point out to the potential of applying semi-supervised learning approaches with heterogeneous data sets to overcome the lack of labelled data in under-resourced domains, and to the existence of acousticprosodic clues shared by speakers with different languages and ages, which allows for the classification of personality independently of these variables.
publishDate 2019
dc.date.none.fl_str_mv 2019-11-21
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.26334/2183-9077/rapln5ano2019a23
https://doi.org/10.26334/2183-9077/rapln5ano2019a23
url https://doi.org/10.26334/2183-9077/rapln5ano2019a23
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://ojs.apl.pt/index.php/rapl/article/view/21
https://ojs.apl.pt/index.php/rapl/article/view/21/10
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Associação Portuguesa de Linguística
publisher.none.fl_str_mv Associação Portuguesa de Linguística
dc.source.none.fl_str_mv Revista da Associação Portuguesa de Linguística; No. 5 (2019): Journal of the Portuguese Linguistics Association; 348-364
Revista da Associação Portuguesa de Linguística; N.º 5 (2019): Revista da Associação Portuguesa de Linguística; 348-364
2183-9077
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133622628777984