A biased random-key genetic algorithm for the minimization of open stacks problem
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://repositorio.inesctec.pt/handle/123456789/5384 http://dx.doi.org/10.1111/itor.12109 |
Resumo: | This paper describes a biased random-key genetic algorithm (BRKGA) for the minimization of the open stacks problem (MOSP). The MOSP arises in a production system scenario, and consists of determining a sequence of cutting patterns that minimize the maximum number of open stacks during the cutting process. The proposed approach combines a BRKGA and a local search procedure for generating the sequence of cutting patterns. A novel fitness function for evaluating the quality of the solutions is also developed. Computational tests are presented using available instances taken from the literature. The high quality of the solutions obtained validate the proposed approach. |
id |
RCAP_ce8ca27f7c8713f1ae8015b0b2cb8096 |
---|---|
oai_identifier_str |
oai:repositorio.inesctec.pt:123456789/5384 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A biased random-key genetic algorithm for the minimization of open stacks problemThis paper describes a biased random-key genetic algorithm (BRKGA) for the minimization of the open stacks problem (MOSP). The MOSP arises in a production system scenario, and consists of determining a sequence of cutting patterns that minimize the maximum number of open stacks during the cutting process. The proposed approach combines a BRKGA and a local search procedure for generating the sequence of cutting patterns. A novel fitness function for evaluating the quality of the solutions is also developed. Computational tests are presented using available instances taken from the literature. The high quality of the solutions obtained validate the proposed approach.2018-01-03T11:39:14Z2016-01-01T00:00:00Z2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://repositorio.inesctec.pt/handle/123456789/5384http://dx.doi.org/10.1111/itor.12109engJosé Fernando GonçalvesResende,MGCCosta,MDinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-05-15T10:20:00Zoai:repositorio.inesctec.pt:123456789/5384Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:52:32.612440Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A biased random-key genetic algorithm for the minimization of open stacks problem |
title |
A biased random-key genetic algorithm for the minimization of open stacks problem |
spellingShingle |
A biased random-key genetic algorithm for the minimization of open stacks problem José Fernando Gonçalves |
title_short |
A biased random-key genetic algorithm for the minimization of open stacks problem |
title_full |
A biased random-key genetic algorithm for the minimization of open stacks problem |
title_fullStr |
A biased random-key genetic algorithm for the minimization of open stacks problem |
title_full_unstemmed |
A biased random-key genetic algorithm for the minimization of open stacks problem |
title_sort |
A biased random-key genetic algorithm for the minimization of open stacks problem |
author |
José Fernando Gonçalves |
author_facet |
José Fernando Gonçalves Resende,MGC Costa,MD |
author_role |
author |
author2 |
Resende,MGC Costa,MD |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
José Fernando Gonçalves Resende,MGC Costa,MD |
description |
This paper describes a biased random-key genetic algorithm (BRKGA) for the minimization of the open stacks problem (MOSP). The MOSP arises in a production system scenario, and consists of determining a sequence of cutting patterns that minimize the maximum number of open stacks during the cutting process. The proposed approach combines a BRKGA and a local search procedure for generating the sequence of cutting patterns. A novel fitness function for evaluating the quality of the solutions is also developed. Computational tests are presented using available instances taken from the literature. The high quality of the solutions obtained validate the proposed approach. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-01-01T00:00:00Z 2016 2018-01-03T11:39:14Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.inesctec.pt/handle/123456789/5384 http://dx.doi.org/10.1111/itor.12109 |
url |
http://repositorio.inesctec.pt/handle/123456789/5384 http://dx.doi.org/10.1111/itor.12109 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131601385291776 |