Study of the metabolome and muscle strength measures for the characterization of patients with myotonic dystrophy type 1

Detalhes bibliográficos
Autor(a) principal: Mateus, Tiago Duarte Cordeiro
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/30819
Resumo: Myotonic dystrophy type 1 (DM1) is an autosomal dominant hereditary disease caused by an alteration leading to an abnormal expansion of unstable repetitions of CTG in the 3’ untranslated region of Myotonic Dystrophy Protein Kinase (DMPK) gene. DM1 is characterized by myotonia, progressive distal muscle weakness and by multisystemic involvement namely cataracts, muscle pain, cardiac and respiratory dysfunctions, endocrine dysfunctions (insulin resistance, metabolic syndrome, dyslipidemia), cancer and alterations in the central nervous system (CNS). Patients with DM1 have a frequency of metabolic syndrome higher than in the general population. Thus, the study of the metabolome is of a great importance since it can give new insight regarding the molecular pathways affected in DM1 diseases as well as to discriminate between the different degrees of severities in patients with DM1 and may also, lead to the development of new metabolic therapeutics. Given the previously reported metabolic alterations observed in patients DM1, we considered that the evaluation of the metabolic profile of those patients of paramount importance. Therefore, we started with the literature review for summarizing the metabolic alterations previously reported in patients with DM1 and the relationship of Lipin with the metabolic alterations in DM1 (Chapter I). Essentially, the previous studies showed a clear metabolic alteration between patients with DM1 and control groups, namely, increased total cholestrol, Low-density lipoprotein, triacylglycerol, insulin and HOMA-Insulin resistance levels, increased glucose levels and low levels of high-density lipoprotein. This review also showed a potential relationship between Lipin and its association with metabolic abnormalities found in patients with DM1, namely, the metabolic roles in adipose tissue, skeletal-muscle, liver and its association with dyslipidemia and insulin resistance, which is a characteristic feature in patients with DM1. The metabolic profile of patients with DM1 then was evaluated using the ATR-FTIR spectroscopy technique, together with multivariate analysis, which is suitable for providing a (bio)chemical profile of patients with DM1 and controls. Essentially, DM1-derived fibroblast and controls were used, and the results showed a clear discrimination within DM1-derived fibroblast with different CTG repeat length and age at onset, meaning that they may have a distinct metabolic profile. This discrimination can be attributed mainly to the altered lipid metabolism in 1800-1500 region cm-1 . It was also possible to discriminate between the control groups and both DM1-derived fibroblast from Coriell institute and Centro Hospitalar do Tâmega e Sousa in 3000-2800 cm-1 region (Chapter II). Additionally, a systematic review was made to gather information of all outcome and measurements used to assess muscle strength in adult patients with DM1 (Chapter IV). The cardiac, skeletal and respiratory muscle strength was evaluated. Briefly, the systematic review showed a consistent use of echocardiography, quantitative muscle test, manual muscle test and manometry to assess cardiac, skeletal and respiratory muscle strength. The measures of choice to assess muscle strength were: (1) ejection fraction in cardiac muscle; (2) muscle isometric torque, grip strength and medical research council (0-5 points and 0-60 points) in skeletal-muscle; (3) maximal inspiratory pressure and maximal expiratory pressure in respiratory muscles. In conclusion, our results suggest that there is a need to further research the lipid metabolism of patients with DM1, not only to better characterize these patients but also to understander the underlying mechanism of lipid abnormalities and to have new insights of Lipin in DM1. FTIR spectroscopy is a valuable tool to characterize patients with DM1 severities, which is crucial for a proper diagnosis and further studies. We successfully gather the more consensual and important measures to evaluate muscle strength. The results obtained were important and useful given that they will be valuable for muscle strength evaluation in future clinical trials and observational studies, particularly to test if a drug is improving muscle strength in patients with DM1.
id RCAP_cedd02256690ab38f4d156efc6636d8f
oai_identifier_str oai:ria.ua.pt:10773/30819
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Study of the metabolome and muscle strength measures for the characterization of patients with myotonic dystrophy type 1Myotonic dystrophy type 1DMPKMetabolic syndromeDyslipidemiaLipinInsulin resistanceMetabolome profileATR-FTIR spectroscopyMultivariate analysisOutcome measuresMuscle strengthCardiac muscleSkeletal muscleRespiratory muscleMyotonic dystrophy type 1 (DM1) is an autosomal dominant hereditary disease caused by an alteration leading to an abnormal expansion of unstable repetitions of CTG in the 3’ untranslated region of Myotonic Dystrophy Protein Kinase (DMPK) gene. DM1 is characterized by myotonia, progressive distal muscle weakness and by multisystemic involvement namely cataracts, muscle pain, cardiac and respiratory dysfunctions, endocrine dysfunctions (insulin resistance, metabolic syndrome, dyslipidemia), cancer and alterations in the central nervous system (CNS). Patients with DM1 have a frequency of metabolic syndrome higher than in the general population. Thus, the study of the metabolome is of a great importance since it can give new insight regarding the molecular pathways affected in DM1 diseases as well as to discriminate between the different degrees of severities in patients with DM1 and may also, lead to the development of new metabolic therapeutics. Given the previously reported metabolic alterations observed in patients DM1, we considered that the evaluation of the metabolic profile of those patients of paramount importance. Therefore, we started with the literature review for summarizing the metabolic alterations previously reported in patients with DM1 and the relationship of Lipin with the metabolic alterations in DM1 (Chapter I). Essentially, the previous studies showed a clear metabolic alteration between patients with DM1 and control groups, namely, increased total cholestrol, Low-density lipoprotein, triacylglycerol, insulin and HOMA-Insulin resistance levels, increased glucose levels and low levels of high-density lipoprotein. This review also showed a potential relationship between Lipin and its association with metabolic abnormalities found in patients with DM1, namely, the metabolic roles in adipose tissue, skeletal-muscle, liver and its association with dyslipidemia and insulin resistance, which is a characteristic feature in patients with DM1. The metabolic profile of patients with DM1 then was evaluated using the ATR-FTIR spectroscopy technique, together with multivariate analysis, which is suitable for providing a (bio)chemical profile of patients with DM1 and controls. Essentially, DM1-derived fibroblast and controls were used, and the results showed a clear discrimination within DM1-derived fibroblast with different CTG repeat length and age at onset, meaning that they may have a distinct metabolic profile. This discrimination can be attributed mainly to the altered lipid metabolism in 1800-1500 region cm-1 . It was also possible to discriminate between the control groups and both DM1-derived fibroblast from Coriell institute and Centro Hospitalar do Tâmega e Sousa in 3000-2800 cm-1 region (Chapter II). Additionally, a systematic review was made to gather information of all outcome and measurements used to assess muscle strength in adult patients with DM1 (Chapter IV). The cardiac, skeletal and respiratory muscle strength was evaluated. Briefly, the systematic review showed a consistent use of echocardiography, quantitative muscle test, manual muscle test and manometry to assess cardiac, skeletal and respiratory muscle strength. The measures of choice to assess muscle strength were: (1) ejection fraction in cardiac muscle; (2) muscle isometric torque, grip strength and medical research council (0-5 points and 0-60 points) in skeletal-muscle; (3) maximal inspiratory pressure and maximal expiratory pressure in respiratory muscles. In conclusion, our results suggest that there is a need to further research the lipid metabolism of patients with DM1, not only to better characterize these patients but also to understander the underlying mechanism of lipid abnormalities and to have new insights of Lipin in DM1. FTIR spectroscopy is a valuable tool to characterize patients with DM1 severities, which is crucial for a proper diagnosis and further studies. We successfully gather the more consensual and important measures to evaluate muscle strength. The results obtained were important and useful given that they will be valuable for muscle strength evaluation in future clinical trials and observational studies, particularly to test if a drug is improving muscle strength in patients with DM1.A distrofia miotônica tipo 1 (DM1) é uma doença hereditária autossómica dominante causada por uma alteração que leva a uma expansão anormal de repetições instáveis de CTG na região 3' não traduzida do gene da proteína quinase da distrofia miotônica (DMPK). DM1 é caracterizado por miotonia, fraqueza muscular distal progressiva e por envolvimento multissistémica, nomeadamente cataratas, dores musculares, disfunções cardíacas e respiratórias, disfunções endócrinas (resistência à insulina, síndrome metabólica, dislipidemia), cancro e alterações no sistema nervoso central (SNC). Doentes com DM1 apresentam frequência de síndrome metabólica maior do que na população geral. Assim, o estudo do metaboloma é de grande importância, pois pode fornecer novos ideias sobre as vias moleculares afetadas nas doenças DM1, bem como discriminar entre os diferentes graus de gravidade em doentes com DM1 e também pode levar ao desenvolvimento de novas terapêuticas metabólicas. Dadas as alterações metabólicas previamente descritas e observadas em doentes com DM1, consideramos que a avaliação do perfil metabólico destes doentes é de grande importância. Portanto, elaborou-se uma revisão da literatura para resumir as alterações metabólicas previamente descritas em doentes com DM1 e a relação da Lipina com as alterações metabólicas na DM1 (Capítulo I). Essencialmente, os estudos anteriores mostraram uma clara alteração metabólica entre os doentes com DM1 e os grupos controlo, nomeadamente o aumento dos níveis de colesterol total, lipoproteína de baixa densidade, triacilglicerol, insulina e resistência HOMA-insulina, o aumento dos níveis de glicose, assim como a diminuição dos níveis de lipoproteína de alta densidade. Esta revisão também demonstrou uma potencial relação entre a Lipina e a sua associação com as anormalidades metabólicas encontradas em doentes com DM1, nomeadamente os papéis metabólicos no tecido adiposo, músculo esquelético, fígado e a sua associação com a dislipidemia e a resistência à insulina, que é uma das características em doentes com DM1. O perfil metabólico dos doentes com DM1 foi então avaliado pela técnica de espectroscopia ATR FTIR, em conjunto com a análise multivariada, sendo que é adequada para fornecer um perfil (bio) químico dos doentes com DM1 e controlos. Essencialmente, fibroblastos derivados de DM1 e controlos foram utilizados, e os resultados demonstraram uma clara discriminação dentro de fibroblastos derivados de DM1 com diferentes repetições de CTG e idades de início da doença, o que significa que estes podem ter um perfil metabólico distinto. Esta discriminação pode ser atribuída principalmente ao metabolismo lipídico alterado na região 1800-1500 cm-1 . Também foi possível discriminar entre os grupos controlo e fibroblastos derivados de DM1 do Instituto Coriell e Centro Hospitalar do Tâmega e Sousa na região de 3000-2800 cm-1 (Capítulo II). Além disso, foi feita uma revisão sistemática para reunir informações de todos os resultados e medidas utilizadas para avaliar a força muscular em doentes adultos com DM1 (Capítulo IV). Foi avaliada a força muscular cardíaca, esquelética e respiratória. Resumidamente, a revisão sistemática demonstrou uma utilização consistente da ecocardiografia, teste muscular quantitativo, teste muscular manual e manometria para avaliar a força muscular cardíaca, esquelética e respiratória. As medidas escolhidas para avaliar a força muscular foram: (1) fração de ejeção para a força do musculo cardíaco; (2) torque isométrico muscular, força de preensão e conselho de pesquisa médica (0-5 pontos e 0-60 pontos) para a força do músculo esquelético; (3) pressão inspiratória máxima e pressão expiratória máxima para a força dos músculos respiratórios. Em conclusão, os resultados sugerem que há uma necessidade de estudos adicionais relativamente ao metabolismo lipídico em doentes com DM1, não apenas para caracterizar melhor estes doentes, como também para compreender o mecanismo subjacente das anormalidades lipídicas e ter novas noções sobre a Lipina na DM1. A espectroscopia FTIR é uma ferramenta valiosa para caracterizar doentes com diferentes severidades da DM1, o que é crucial para um diagnóstico adequado e para estudos futuros. Reunimos com sucesso as medidas mais consensuais e importantes para avaliar a força muscular. Os resultados obtidos foram importantes e úteis, pois serão valiosos para avaliação da força muscular em futuros ensaios clínicos e estudos observacionais, principalm2023-02-25T00:00:00Z2021-02-12T00:00:00Z2021-02-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/30819engMateus, Tiago Duarte Cordeiroinfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:59:32Zoai:ria.ua.pt:10773/30819Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:02:48.840058Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Study of the metabolome and muscle strength measures for the characterization of patients with myotonic dystrophy type 1
title Study of the metabolome and muscle strength measures for the characterization of patients with myotonic dystrophy type 1
spellingShingle Study of the metabolome and muscle strength measures for the characterization of patients with myotonic dystrophy type 1
Mateus, Tiago Duarte Cordeiro
Myotonic dystrophy type 1
DMPK
Metabolic syndrome
Dyslipidemia
Lipin
Insulin resistance
Metabolome profile
ATR-FTIR spectroscopy
Multivariate analysis
Outcome measures
Muscle strength
Cardiac muscle
Skeletal muscle
Respiratory muscle
title_short Study of the metabolome and muscle strength measures for the characterization of patients with myotonic dystrophy type 1
title_full Study of the metabolome and muscle strength measures for the characterization of patients with myotonic dystrophy type 1
title_fullStr Study of the metabolome and muscle strength measures for the characterization of patients with myotonic dystrophy type 1
title_full_unstemmed Study of the metabolome and muscle strength measures for the characterization of patients with myotonic dystrophy type 1
title_sort Study of the metabolome and muscle strength measures for the characterization of patients with myotonic dystrophy type 1
author Mateus, Tiago Duarte Cordeiro
author_facet Mateus, Tiago Duarte Cordeiro
author_role author
dc.contributor.author.fl_str_mv Mateus, Tiago Duarte Cordeiro
dc.subject.por.fl_str_mv Myotonic dystrophy type 1
DMPK
Metabolic syndrome
Dyslipidemia
Lipin
Insulin resistance
Metabolome profile
ATR-FTIR spectroscopy
Multivariate analysis
Outcome measures
Muscle strength
Cardiac muscle
Skeletal muscle
Respiratory muscle
topic Myotonic dystrophy type 1
DMPK
Metabolic syndrome
Dyslipidemia
Lipin
Insulin resistance
Metabolome profile
ATR-FTIR spectroscopy
Multivariate analysis
Outcome measures
Muscle strength
Cardiac muscle
Skeletal muscle
Respiratory muscle
description Myotonic dystrophy type 1 (DM1) is an autosomal dominant hereditary disease caused by an alteration leading to an abnormal expansion of unstable repetitions of CTG in the 3’ untranslated region of Myotonic Dystrophy Protein Kinase (DMPK) gene. DM1 is characterized by myotonia, progressive distal muscle weakness and by multisystemic involvement namely cataracts, muscle pain, cardiac and respiratory dysfunctions, endocrine dysfunctions (insulin resistance, metabolic syndrome, dyslipidemia), cancer and alterations in the central nervous system (CNS). Patients with DM1 have a frequency of metabolic syndrome higher than in the general population. Thus, the study of the metabolome is of a great importance since it can give new insight regarding the molecular pathways affected in DM1 diseases as well as to discriminate between the different degrees of severities in patients with DM1 and may also, lead to the development of new metabolic therapeutics. Given the previously reported metabolic alterations observed in patients DM1, we considered that the evaluation of the metabolic profile of those patients of paramount importance. Therefore, we started with the literature review for summarizing the metabolic alterations previously reported in patients with DM1 and the relationship of Lipin with the metabolic alterations in DM1 (Chapter I). Essentially, the previous studies showed a clear metabolic alteration between patients with DM1 and control groups, namely, increased total cholestrol, Low-density lipoprotein, triacylglycerol, insulin and HOMA-Insulin resistance levels, increased glucose levels and low levels of high-density lipoprotein. This review also showed a potential relationship between Lipin and its association with metabolic abnormalities found in patients with DM1, namely, the metabolic roles in adipose tissue, skeletal-muscle, liver and its association with dyslipidemia and insulin resistance, which is a characteristic feature in patients with DM1. The metabolic profile of patients with DM1 then was evaluated using the ATR-FTIR spectroscopy technique, together with multivariate analysis, which is suitable for providing a (bio)chemical profile of patients with DM1 and controls. Essentially, DM1-derived fibroblast and controls were used, and the results showed a clear discrimination within DM1-derived fibroblast with different CTG repeat length and age at onset, meaning that they may have a distinct metabolic profile. This discrimination can be attributed mainly to the altered lipid metabolism in 1800-1500 region cm-1 . It was also possible to discriminate between the control groups and both DM1-derived fibroblast from Coriell institute and Centro Hospitalar do Tâmega e Sousa in 3000-2800 cm-1 region (Chapter II). Additionally, a systematic review was made to gather information of all outcome and measurements used to assess muscle strength in adult patients with DM1 (Chapter IV). The cardiac, skeletal and respiratory muscle strength was evaluated. Briefly, the systematic review showed a consistent use of echocardiography, quantitative muscle test, manual muscle test and manometry to assess cardiac, skeletal and respiratory muscle strength. The measures of choice to assess muscle strength were: (1) ejection fraction in cardiac muscle; (2) muscle isometric torque, grip strength and medical research council (0-5 points and 0-60 points) in skeletal-muscle; (3) maximal inspiratory pressure and maximal expiratory pressure in respiratory muscles. In conclusion, our results suggest that there is a need to further research the lipid metabolism of patients with DM1, not only to better characterize these patients but also to understander the underlying mechanism of lipid abnormalities and to have new insights of Lipin in DM1. FTIR spectroscopy is a valuable tool to characterize patients with DM1 severities, which is crucial for a proper diagnosis and further studies. We successfully gather the more consensual and important measures to evaluate muscle strength. The results obtained were important and useful given that they will be valuable for muscle strength evaluation in future clinical trials and observational studies, particularly to test if a drug is improving muscle strength in patients with DM1.
publishDate 2021
dc.date.none.fl_str_mv 2021-02-12T00:00:00Z
2021-02-12
2023-02-25T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/30819
url http://hdl.handle.net/10773/30819
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137683915669504