Pedestrian exposure to air pollution in cities: modeling the effect of roadside trees

Detalhes bibliográficos
Autor(a) principal: Amorim, Jorge Humberto
Data de Publicação: 2013
Outros Autores: Valente, Joana, Cascão, Pedro, Rodrigues, Vera, Pimentel, Cláudia, Miranda, Ana I., Borrego, Carlos
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/24311
Resumo: The exposure of students to traffic-emitted carbon monoxide (CO) in their daily walk to school is evaluated, with a particular emphasis on the effect of trees and route choice. The study is focused on the city centre of Aveiro, in central Portugal. Time evolution of the georeferenced location of an individual is tracked with a GPS for different alternative walking routes to a school. Spatial distribution of CO concentration is simulated with a computational fluid dynamics (CFD) model. An exposure model is developed that associates the georeferenced location of the student with the computed air quality levels (at an average breathing height) for that specific grid cell. For each individual, the model calculates the instantaneous exposure at each time frame and the mean value for a given period. Results show a general benefit induced by the trees over the mean exposure of the student in each route. However, in the case of instantaneous exposure values, this is not consistent along the entire period. Also, the variability of the estimated exposure values indicates the potential error that can be committed when using a single value of air quality as a surrogate of air pollution exposure., The exposure of students to traffic-emitted carbon monoxide (CO) in their daily walk to school is evaluated, with a particular emphasis on the effect of trees and route choice. The study is focused on the city centre of Aveiro, in central Portugal. Time evolution of the georeferenced location of an individual is tracked with a GPS for different alternative walking routes to a school. Spatial distribution of CO concentration is simulated with a computational fluid dynamics (CFD) model. An exposure model is developed that associates the georeferenced location of the student with the computed air quality levels (at an average breathing height) for that specific grid cell. For each individual, the model calculates the instantaneous exposure at each time frame and the mean value for a given period. Results show a general benefit induced by the trees over the mean exposure of the student in each route. However, in the case of instantaneous exposure values, this is not consistent along the entire period. Also, the variability of the estimated exposure values indicates the potential error that can be committed when using a single value of air quality as a surrogate of air pollution exposure.
id RCAP_cef32da1fad3b42a5d5d459101577584
oai_identifier_str oai:ria.ua.pt:10773/24311
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Pedestrian exposure to air pollution in cities: modeling the effect of roadside treesThe exposure of students to traffic-emitted carbon monoxide (CO) in their daily walk to school is evaluated, with a particular emphasis on the effect of trees and route choice. The study is focused on the city centre of Aveiro, in central Portugal. Time evolution of the georeferenced location of an individual is tracked with a GPS for different alternative walking routes to a school. Spatial distribution of CO concentration is simulated with a computational fluid dynamics (CFD) model. An exposure model is developed that associates the georeferenced location of the student with the computed air quality levels (at an average breathing height) for that specific grid cell. For each individual, the model calculates the instantaneous exposure at each time frame and the mean value for a given period. Results show a general benefit induced by the trees over the mean exposure of the student in each route. However, in the case of instantaneous exposure values, this is not consistent along the entire period. Also, the variability of the estimated exposure values indicates the potential error that can be committed when using a single value of air quality as a surrogate of air pollution exposure., The exposure of students to traffic-emitted carbon monoxide (CO) in their daily walk to school is evaluated, with a particular emphasis on the effect of trees and route choice. The study is focused on the city centre of Aveiro, in central Portugal. Time evolution of the georeferenced location of an individual is tracked with a GPS for different alternative walking routes to a school. Spatial distribution of CO concentration is simulated with a computational fluid dynamics (CFD) model. An exposure model is developed that associates the georeferenced location of the student with the computed air quality levels (at an average breathing height) for that specific grid cell. For each individual, the model calculates the instantaneous exposure at each time frame and the mean value for a given period. Results show a general benefit induced by the trees over the mean exposure of the student in each route. However, in the case of instantaneous exposure values, this is not consistent along the entire period. Also, the variability of the estimated exposure values indicates the potential error that can be committed when using a single value of air quality as a surrogate of air pollution exposure.Hindawi Publishing Corporation2018-10-16T11:11:07Z2013-01-01T00:00:00Z2013info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/24311eng1687-930910.1155/2013/964904Amorim, Jorge HumbertoValente, JoanaCascão, PedroRodrigues, VeraPimentel, CláudiaMiranda, Ana I.Borrego, Carlosinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:45:51Zoai:ria.ua.pt:10773/24311Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:57:16.376484Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Pedestrian exposure to air pollution in cities: modeling the effect of roadside trees
title Pedestrian exposure to air pollution in cities: modeling the effect of roadside trees
spellingShingle Pedestrian exposure to air pollution in cities: modeling the effect of roadside trees
Amorim, Jorge Humberto
title_short Pedestrian exposure to air pollution in cities: modeling the effect of roadside trees
title_full Pedestrian exposure to air pollution in cities: modeling the effect of roadside trees
title_fullStr Pedestrian exposure to air pollution in cities: modeling the effect of roadside trees
title_full_unstemmed Pedestrian exposure to air pollution in cities: modeling the effect of roadside trees
title_sort Pedestrian exposure to air pollution in cities: modeling the effect of roadside trees
author Amorim, Jorge Humberto
author_facet Amorim, Jorge Humberto
Valente, Joana
Cascão, Pedro
Rodrigues, Vera
Pimentel, Cláudia
Miranda, Ana I.
Borrego, Carlos
author_role author
author2 Valente, Joana
Cascão, Pedro
Rodrigues, Vera
Pimentel, Cláudia
Miranda, Ana I.
Borrego, Carlos
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Amorim, Jorge Humberto
Valente, Joana
Cascão, Pedro
Rodrigues, Vera
Pimentel, Cláudia
Miranda, Ana I.
Borrego, Carlos
description The exposure of students to traffic-emitted carbon monoxide (CO) in their daily walk to school is evaluated, with a particular emphasis on the effect of trees and route choice. The study is focused on the city centre of Aveiro, in central Portugal. Time evolution of the georeferenced location of an individual is tracked with a GPS for different alternative walking routes to a school. Spatial distribution of CO concentration is simulated with a computational fluid dynamics (CFD) model. An exposure model is developed that associates the georeferenced location of the student with the computed air quality levels (at an average breathing height) for that specific grid cell. For each individual, the model calculates the instantaneous exposure at each time frame and the mean value for a given period. Results show a general benefit induced by the trees over the mean exposure of the student in each route. However, in the case of instantaneous exposure values, this is not consistent along the entire period. Also, the variability of the estimated exposure values indicates the potential error that can be committed when using a single value of air quality as a surrogate of air pollution exposure., The exposure of students to traffic-emitted carbon monoxide (CO) in their daily walk to school is evaluated, with a particular emphasis on the effect of trees and route choice. The study is focused on the city centre of Aveiro, in central Portugal. Time evolution of the georeferenced location of an individual is tracked with a GPS for different alternative walking routes to a school. Spatial distribution of CO concentration is simulated with a computational fluid dynamics (CFD) model. An exposure model is developed that associates the georeferenced location of the student with the computed air quality levels (at an average breathing height) for that specific grid cell. For each individual, the model calculates the instantaneous exposure at each time frame and the mean value for a given period. Results show a general benefit induced by the trees over the mean exposure of the student in each route. However, in the case of instantaneous exposure values, this is not consistent along the entire period. Also, the variability of the estimated exposure values indicates the potential error that can be committed when using a single value of air quality as a surrogate of air pollution exposure.
publishDate 2013
dc.date.none.fl_str_mv 2013-01-01T00:00:00Z
2013
2018-10-16T11:11:07Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/24311
url http://hdl.handle.net/10773/24311
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1687-9309
10.1155/2013/964904
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Hindawi Publishing Corporation
publisher.none.fl_str_mv Hindawi Publishing Corporation
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137627450900480