Maximum likelihood estimation with nonlinear regression in polarographic and potentiometric studies
Autor(a) principal: | |
---|---|
Data de Publicação: | 2001 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
DOI: | 10.1016/S0003-2670(00)01320-9 |
Texto Completo: | http://hdl.handle.net/10316/5221 https://doi.org/10.1016/S0003-2670(00)01320-9 |
Resumo: | In this work we review some aspects of maximum likelihood nonlinear modeling in polarographic and potentiometric techniques. Different algorithms, namely the Levenberg-Marquardt and the "error-in-variables" methods in parametric and Monte-Carlo nonparametric estimation are used. Conclusions are drawn upon the influence of experimental errors and error correlation, introduced via statistical weighting, in the accuracy and precision of the estimated parameters. Several of the tested alternatives, including regression on the signal variable alone with a global error weighting function, are shown to provide adequate representation of the experimental data. |
id |
RCAP_cef5b3d27e15af07b1e720949bf4aff8 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/5221 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Maximum likelihood estimation with nonlinear regression in polarographic and potentiometric studiesMaximum likelihoodNonlinear regressionPolarographic studiesIn this work we review some aspects of maximum likelihood nonlinear modeling in polarographic and potentiometric techniques. Different algorithms, namely the Levenberg-Marquardt and the "error-in-variables" methods in parametric and Monte-Carlo nonparametric estimation are used. Conclusions are drawn upon the influence of experimental errors and error correlation, introduced via statistical weighting, in the accuracy and precision of the estimated parameters. Several of the tested alternatives, including regression on the signal variable alone with a global error weighting function, are shown to provide adequate representation of the experimental data.http://www.sciencedirect.com/science/article/B6TF4-42MN77N-G/1/41f1ab649732a741006ed3b32e9ea5d82001info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleaplication/PDFhttp://hdl.handle.net/10316/5221http://hdl.handle.net/10316/5221https://doi.org/10.1016/S0003-2670(00)01320-9engAnalytica Chimica Acta. 433:1 (2001) 135-143Pereira, J. L. G. C.Pais, A. A. C. C.Redinha, J. S.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-11-06T16:59:26Zoai:estudogeral.uc.pt:10316/5221Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:01:22.125534Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Maximum likelihood estimation with nonlinear regression in polarographic and potentiometric studies |
title |
Maximum likelihood estimation with nonlinear regression in polarographic and potentiometric studies |
spellingShingle |
Maximum likelihood estimation with nonlinear regression in polarographic and potentiometric studies Maximum likelihood estimation with nonlinear regression in polarographic and potentiometric studies Pereira, J. L. G. C. Maximum likelihood Nonlinear regression Polarographic studies Pereira, J. L. G. C. Maximum likelihood Nonlinear regression Polarographic studies |
title_short |
Maximum likelihood estimation with nonlinear regression in polarographic and potentiometric studies |
title_full |
Maximum likelihood estimation with nonlinear regression in polarographic and potentiometric studies |
title_fullStr |
Maximum likelihood estimation with nonlinear regression in polarographic and potentiometric studies Maximum likelihood estimation with nonlinear regression in polarographic and potentiometric studies |
title_full_unstemmed |
Maximum likelihood estimation with nonlinear regression in polarographic and potentiometric studies Maximum likelihood estimation with nonlinear regression in polarographic and potentiometric studies |
title_sort |
Maximum likelihood estimation with nonlinear regression in polarographic and potentiometric studies |
author |
Pereira, J. L. G. C. |
author_facet |
Pereira, J. L. G. C. Pereira, J. L. G. C. Pais, A. A. C. C. Redinha, J. S. Pais, A. A. C. C. Redinha, J. S. |
author_role |
author |
author2 |
Pais, A. A. C. C. Redinha, J. S. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Pereira, J. L. G. C. Pais, A. A. C. C. Redinha, J. S. |
dc.subject.por.fl_str_mv |
Maximum likelihood Nonlinear regression Polarographic studies |
topic |
Maximum likelihood Nonlinear regression Polarographic studies |
description |
In this work we review some aspects of maximum likelihood nonlinear modeling in polarographic and potentiometric techniques. Different algorithms, namely the Levenberg-Marquardt and the "error-in-variables" methods in parametric and Monte-Carlo nonparametric estimation are used. Conclusions are drawn upon the influence of experimental errors and error correlation, introduced via statistical weighting, in the accuracy and precision of the estimated parameters. Several of the tested alternatives, including regression on the signal variable alone with a global error weighting function, are shown to provide adequate representation of the experimental data. |
publishDate |
2001 |
dc.date.none.fl_str_mv |
2001 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/5221 http://hdl.handle.net/10316/5221 https://doi.org/10.1016/S0003-2670(00)01320-9 |
url |
http://hdl.handle.net/10316/5221 https://doi.org/10.1016/S0003-2670(00)01320-9 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Analytica Chimica Acta. 433:1 (2001) 135-143 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
aplication/PDF |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1822183462558236672 |
dc.identifier.doi.none.fl_str_mv |
10.1016/S0003-2670(00)01320-9 |