COMPOSITION CODES

Detalhes bibliográficos
Autor(a) principal: Fornasini, E
Data de Publicação: 2016
Outros Autores: Pinho, T, Pinto, R, Rocha, P
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/110109
Resumo: In this paper we introduce a special class of 2D convolutional codes, called composition codes, which admit encoders G(d(1),d(2)) that can be decomposed as the product of two 1D encoders, i.e., G(d(1), d(2)) = G(2) (d(2))G(1)(d(1))" Taking into account this decomposition, we obtain syndrome formers of the code directly from G(1)(d(1)) and G(2)(d(2)), in case G(1)(d(1)) and G(2)(d(2)) are right prime. Moreover we consider 2D state-space realizations by means of a separable Roesser model of the encoders and syndrome formers of a composition code and we investigate the minimality of such realizations. In particular, we obtain minimal realizations for composition codes which admit an encoder G(d(1),d(2)) = G(2)(d(2))G(1)(d(1)) with G(2)(d(2)) a systematic 1D encoder. Finally, we investigate the minimality of 2D separable Roesser state-space realizations for syndrome formers of these codes.
id RCAP_d0353d76ee4a0783c0e928e8ff474f4c
oai_identifier_str oai:repositorio-aberto.up.pt:10216/110109
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling COMPOSITION CODESIn this paper we introduce a special class of 2D convolutional codes, called composition codes, which admit encoders G(d(1),d(2)) that can be decomposed as the product of two 1D encoders, i.e., G(d(1), d(2)) = G(2) (d(2))G(1)(d(1))" Taking into account this decomposition, we obtain syndrome formers of the code directly from G(1)(d(1)) and G(2)(d(2)), in case G(1)(d(1)) and G(2)(d(2)) are right prime. Moreover we consider 2D state-space realizations by means of a separable Roesser model of the encoders and syndrome formers of a composition code and we investigate the minimality of such realizations. In particular, we obtain minimal realizations for composition codes which admit an encoder G(d(1),d(2)) = G(2)(d(2))G(1)(d(1)) with G(2)(d(2)) a systematic 1D encoder. Finally, we investigate the minimality of 2D separable Roesser state-space realizations for syndrome formers of these codes.20162016-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/110109eng1930-534610.3934/amc.2016.10.163Fornasini, EPinho, TPinto, RRocha, Pinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T13:18:11Zoai:repositorio-aberto.up.pt:10216/110109Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:38:01.505612Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv COMPOSITION CODES
title COMPOSITION CODES
spellingShingle COMPOSITION CODES
Fornasini, E
title_short COMPOSITION CODES
title_full COMPOSITION CODES
title_fullStr COMPOSITION CODES
title_full_unstemmed COMPOSITION CODES
title_sort COMPOSITION CODES
author Fornasini, E
author_facet Fornasini, E
Pinho, T
Pinto, R
Rocha, P
author_role author
author2 Pinho, T
Pinto, R
Rocha, P
author2_role author
author
author
dc.contributor.author.fl_str_mv Fornasini, E
Pinho, T
Pinto, R
Rocha, P
description In this paper we introduce a special class of 2D convolutional codes, called composition codes, which admit encoders G(d(1),d(2)) that can be decomposed as the product of two 1D encoders, i.e., G(d(1), d(2)) = G(2) (d(2))G(1)(d(1))" Taking into account this decomposition, we obtain syndrome formers of the code directly from G(1)(d(1)) and G(2)(d(2)), in case G(1)(d(1)) and G(2)(d(2)) are right prime. Moreover we consider 2D state-space realizations by means of a separable Roesser model of the encoders and syndrome formers of a composition code and we investigate the minimality of such realizations. In particular, we obtain minimal realizations for composition codes which admit an encoder G(d(1),d(2)) = G(2)(d(2))G(1)(d(1)) with G(2)(d(2)) a systematic 1D encoder. Finally, we investigate the minimality of 2D separable Roesser state-space realizations for syndrome formers of these codes.
publishDate 2016
dc.date.none.fl_str_mv 2016
2016-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/110109
url https://hdl.handle.net/10216/110109
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1930-5346
10.3934/amc.2016.10.163
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135693613563905