Systematic maximum sum rank codes

Detalhes bibliográficos
Autor(a) principal: Almeida, Paulo
Data de Publicação: 2020
Outros Autores: Martínez-Peñas, Umberto, Napp, Diego
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/28477
Resumo: In the last decade there has been a great interest in extending results for codes equipped with the Hamming metric to analogous results for codes endowed with the rank metric. This work follows this thread of research and studies the characterization of systematic generator matrices (encoders) of codes with maximum rank distance. In the context of Hamming distance these codes are the so-called Maximum Distance Separable (MDS) codes and systematic encoders have been fully investigated. In this paper we investigate the algebraic properties and representation of encoders in systematic form of Maximum Rank Distance (MRD) codes and Maximum Sum Rank Distance (MSRD) codes. We address both block codes and convolutional codes separately and present necessary and sufficient conditions for an encoder in systematic form to generate a code with maximum (sum) rank distance. These characterizations are given in terms of certain matrices that must be superregular in a extension field and that preserve superregularity after some transformations performed over the base field. We conclude the work presenting some examples of Maximum Sum Rank convolutional codes over small fields. For the given parameters the examples obtained are over smaller fields than the examples obtained by other authors.
id RCAP_d06f27456fd71311f4813d71ffeb5e1e
oai_identifier_str oai:ria.ua.pt:10773/28477
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Systematic maximum sum rank codesMaximum Rank DistanceMaximum Sum Rank DistanceConvolutional codesSuperregular matricesGabidulin codesIn the last decade there has been a great interest in extending results for codes equipped with the Hamming metric to analogous results for codes endowed with the rank metric. This work follows this thread of research and studies the characterization of systematic generator matrices (encoders) of codes with maximum rank distance. In the context of Hamming distance these codes are the so-called Maximum Distance Separable (MDS) codes and systematic encoders have been fully investigated. In this paper we investigate the algebraic properties and representation of encoders in systematic form of Maximum Rank Distance (MRD) codes and Maximum Sum Rank Distance (MSRD) codes. We address both block codes and convolutional codes separately and present necessary and sufficient conditions for an encoder in systematic form to generate a code with maximum (sum) rank distance. These characterizations are given in terms of certain matrices that must be superregular in a extension field and that preserve superregularity after some transformations performed over the base field. We conclude the work presenting some examples of Maximum Sum Rank convolutional codes over small fields. For the given parameters the examples obtained are over smaller fields than the examples obtained by other authors.Elsevier2020-05-11T14:29:47Z2020-08-01T00:00:00Z2020-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/28477eng1071-579710.1016/j.ffa.2020.101677Almeida, PauloMartínez-Peñas, UmbertoNapp, Diegoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:55:04Zoai:ria.ua.pt:10773/28477Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:01:00.371252Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Systematic maximum sum rank codes
title Systematic maximum sum rank codes
spellingShingle Systematic maximum sum rank codes
Almeida, Paulo
Maximum Rank Distance
Maximum Sum Rank Distance
Convolutional codes
Superregular matrices
Gabidulin codes
title_short Systematic maximum sum rank codes
title_full Systematic maximum sum rank codes
title_fullStr Systematic maximum sum rank codes
title_full_unstemmed Systematic maximum sum rank codes
title_sort Systematic maximum sum rank codes
author Almeida, Paulo
author_facet Almeida, Paulo
Martínez-Peñas, Umberto
Napp, Diego
author_role author
author2 Martínez-Peñas, Umberto
Napp, Diego
author2_role author
author
dc.contributor.author.fl_str_mv Almeida, Paulo
Martínez-Peñas, Umberto
Napp, Diego
dc.subject.por.fl_str_mv Maximum Rank Distance
Maximum Sum Rank Distance
Convolutional codes
Superregular matrices
Gabidulin codes
topic Maximum Rank Distance
Maximum Sum Rank Distance
Convolutional codes
Superregular matrices
Gabidulin codes
description In the last decade there has been a great interest in extending results for codes equipped with the Hamming metric to analogous results for codes endowed with the rank metric. This work follows this thread of research and studies the characterization of systematic generator matrices (encoders) of codes with maximum rank distance. In the context of Hamming distance these codes are the so-called Maximum Distance Separable (MDS) codes and systematic encoders have been fully investigated. In this paper we investigate the algebraic properties and representation of encoders in systematic form of Maximum Rank Distance (MRD) codes and Maximum Sum Rank Distance (MSRD) codes. We address both block codes and convolutional codes separately and present necessary and sufficient conditions for an encoder in systematic form to generate a code with maximum (sum) rank distance. These characterizations are given in terms of certain matrices that must be superregular in a extension field and that preserve superregularity after some transformations performed over the base field. We conclude the work presenting some examples of Maximum Sum Rank convolutional codes over small fields. For the given parameters the examples obtained are over smaller fields than the examples obtained by other authors.
publishDate 2020
dc.date.none.fl_str_mv 2020-05-11T14:29:47Z
2020-08-01T00:00:00Z
2020-08
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/28477
url http://hdl.handle.net/10773/28477
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1071-5797
10.1016/j.ffa.2020.101677
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137666122383360