A Deep Learning Approach for Red Lesions Detection in Video Capsule Endoscopies
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.8/3645 |
Resumo: | The wireless capsule endoscopy has revolutionized early diagnosis of small bowel diseases. However, a single examination has up to 10 h of video and requires between 30–120 min to read. Computational methods are needed to increase both efficiency and accuracy of the diagnosis. In this paper, an evaluation of deep learning U-Net architecture is presented, to detect and segment red lesions in the small bowel. Its results were compared with those obtained from the literature review. To make the evaluation closer to those used in clinical environments, the U-Net was also evaluated in an annotated sequence by using the Suspected Blood Indicator tool (SBI). Results found that detection and segmentation using U-Net outperformed both the algorithms used in the literature review and the SBI tool. |
id |
RCAP_d09da6b07255f05f99e731870a5dce9a |
---|---|
oai_identifier_str |
oai:iconline.ipleiria.pt:10400.8/3645 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A Deep Learning Approach for Red Lesions Detection in Video Capsule EndoscopiesLesion detectionGastrointestinal bleedingMachine learningCapsule endoscopyDeep learningU-NetComputer ScienceImage AnalysisThe wireless capsule endoscopy has revolutionized early diagnosis of small bowel diseases. However, a single examination has up to 10 h of video and requires between 30–120 min to read. Computational methods are needed to increase both efficiency and accuracy of the diagnosis. In this paper, an evaluation of deep learning U-Net architecture is presented, to detect and segment red lesions in the small bowel. Its results were compared with those obtained from the literature review. To make the evaluation closer to those used in clinical environments, the U-Net was also evaluated in an annotated sequence by using the Suspected Blood Indicator tool (SBI). Results found that detection and segmentation using U-Net outperformed both the algorithms used in the literature review and the SBI tool.Springer, ChamIC-OnlineCoelho, PauloPereira, AnaLeite, ArgentinaSalgado, MartaCunha, António2018-11-13T17:12:12Z20182018-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.8/3645engCoelho P., Pereira A., Leite A., Salgado M., Cunha A. (2018) A Deep Learning Approach for Red Lesions Detection in Video Capsule Endoscopies. In: Campilho A., Karray F., ter Haar Romeny B. (eds) Image Analysis and Recognition. ICIAR 2018. Lecture Notes in Computer Science, vol 10882. Springer, Cham978-3-319-92999-6https://doi.org/10.1007/978-3-319-93000-8_63info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-17T15:47:35Zoai:iconline.ipleiria.pt:10400.8/3645Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:47:42.945966Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A Deep Learning Approach for Red Lesions Detection in Video Capsule Endoscopies |
title |
A Deep Learning Approach for Red Lesions Detection in Video Capsule Endoscopies |
spellingShingle |
A Deep Learning Approach for Red Lesions Detection in Video Capsule Endoscopies Coelho, Paulo Lesion detection Gastrointestinal bleeding Machine learning Capsule endoscopy Deep learning U-Net Computer Science Image Analysis |
title_short |
A Deep Learning Approach for Red Lesions Detection in Video Capsule Endoscopies |
title_full |
A Deep Learning Approach for Red Lesions Detection in Video Capsule Endoscopies |
title_fullStr |
A Deep Learning Approach for Red Lesions Detection in Video Capsule Endoscopies |
title_full_unstemmed |
A Deep Learning Approach for Red Lesions Detection in Video Capsule Endoscopies |
title_sort |
A Deep Learning Approach for Red Lesions Detection in Video Capsule Endoscopies |
author |
Coelho, Paulo |
author_facet |
Coelho, Paulo Pereira, Ana Leite, Argentina Salgado, Marta Cunha, António |
author_role |
author |
author2 |
Pereira, Ana Leite, Argentina Salgado, Marta Cunha, António |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
IC-Online |
dc.contributor.author.fl_str_mv |
Coelho, Paulo Pereira, Ana Leite, Argentina Salgado, Marta Cunha, António |
dc.subject.por.fl_str_mv |
Lesion detection Gastrointestinal bleeding Machine learning Capsule endoscopy Deep learning U-Net Computer Science Image Analysis |
topic |
Lesion detection Gastrointestinal bleeding Machine learning Capsule endoscopy Deep learning U-Net Computer Science Image Analysis |
description |
The wireless capsule endoscopy has revolutionized early diagnosis of small bowel diseases. However, a single examination has up to 10 h of video and requires between 30–120 min to read. Computational methods are needed to increase both efficiency and accuracy of the diagnosis. In this paper, an evaluation of deep learning U-Net architecture is presented, to detect and segment red lesions in the small bowel. Its results were compared with those obtained from the literature review. To make the evaluation closer to those used in clinical environments, the U-Net was also evaluated in an annotated sequence by using the Suspected Blood Indicator tool (SBI). Results found that detection and segmentation using U-Net outperformed both the algorithms used in the literature review and the SBI tool. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-11-13T17:12:12Z 2018 2018-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.8/3645 |
url |
http://hdl.handle.net/10400.8/3645 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Coelho P., Pereira A., Leite A., Salgado M., Cunha A. (2018) A Deep Learning Approach for Red Lesions Detection in Video Capsule Endoscopies. In: Campilho A., Karray F., ter Haar Romeny B. (eds) Image Analysis and Recognition. ICIAR 2018. Lecture Notes in Computer Science, vol 10882. Springer, Cham 978-3-319-92999-6 https://doi.org/10.1007/978-3-319-93000-8_63 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer, Cham |
publisher.none.fl_str_mv |
Springer, Cham |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136970911252480 |