Open data and injuries in urban areas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/114401 |
Resumo: | Vaz, E., Cusimano, M. D., Bação, F., Damásio, B., & Penfound, E. (2021). Open data and injuries in urban areas: A spatial analytical framework of Toronto using machine learning and spatial regressions. PLoS ONE, 16(March), 1-17. [e0248285]. https://doi.org/10.1371/journal.pone.0248285 |
id |
RCAP_d1a5f98f8b82b397dd806f0da78e1a9a |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/114401 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Open data and injuries in urban areasA spatial analytical framework of Toronto using machine learning and spatial regressionsinjuriesTorontoCanadaMorbidityWellbeingSpatial analysisBiochemistry, Genetics and Molecular Biology(all)Agricultural and Biological Sciences(all)GeneralSDG 3 - Good Health and Well-beingSDG 10 - Reduced InequalitiesVaz, E., Cusimano, M. D., Bação, F., Damásio, B., & Penfound, E. (2021). Open data and injuries in urban areas: A spatial analytical framework of Toronto using machine learning and spatial regressions. PLoS ONE, 16(March), 1-17. [e0248285]. https://doi.org/10.1371/journal.pone.0248285Injuries have become devastating and often under-recognized public health concerns. In Canada, injuries are the leading cause of potential years of life lost before the age of 65. The geographical patterns of injury, however, are evident both over space and time, suggesting the possibility of spatial optimization of policies at the neighborhood scale to mitigate injury risk, foster prevention, and control within metropolitan regions. In this paper, Canada’s National Ambulatory Care Reporting System is used to assess unintentional and intentional injuries for Toronto between 2004 and 2010, exploring the spatial relations of injury throughout the city, together with Wellbeing Toronto data. Corroborating with these findings, spatial autocorrelations at global and local levels are performed for the reported over 1.7 million injuries. The sub-categorization for Toronto’s neighborhood further distills the most vulnerable communities throughout the city, registering a robust spatial profile throughout. Individual neighborhoods pave the need for distinct policy profiles for injury prevention. This brings one of the main novelties of this contribution. A comparison of the three regression models is carried out. The findings suggest that the performance of spatial regression models is significantly stronger, showing evidence that spatial regressions should be used for injury research. Wellbeing Toronto data performs reasonably well in assessing unintentional injuries, morbidity, and falls. Less so to understand the dynamics of intentional injuries. The results enable a framework to allow tailor-made injury prevention initiatives at the neighborhood level as a vital source for planning and participatory decision making in the medical field in developed cities such as Toronto.Information Management Research Center (MagIC) - NOVA Information Management SchoolNOVA Information Management School (NOVA IMS)RUNVaz, EricCusimano, Michael D.Bação, FernandoDamásio, BrunoPenfound, Elissa2021-03-24T23:27:53Z2021-03-112021-03-11T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article17application/pdfhttp://hdl.handle.net/10362/114401eng1932-6203PURE: 28829307https://doi.org/10.1371/journal.pone.0248285info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:57:05Zoai:run.unl.pt:10362/114401Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:42:31.199022Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Open data and injuries in urban areas A spatial analytical framework of Toronto using machine learning and spatial regressions |
title |
Open data and injuries in urban areas |
spellingShingle |
Open data and injuries in urban areas Vaz, Eric injuries Toronto Canada Morbidity Wellbeing Spatial analysis Biochemistry, Genetics and Molecular Biology(all) Agricultural and Biological Sciences(all) General SDG 3 - Good Health and Well-being SDG 10 - Reduced Inequalities |
title_short |
Open data and injuries in urban areas |
title_full |
Open data and injuries in urban areas |
title_fullStr |
Open data and injuries in urban areas |
title_full_unstemmed |
Open data and injuries in urban areas |
title_sort |
Open data and injuries in urban areas |
author |
Vaz, Eric |
author_facet |
Vaz, Eric Cusimano, Michael D. Bação, Fernando Damásio, Bruno Penfound, Elissa |
author_role |
author |
author2 |
Cusimano, Michael D. Bação, Fernando Damásio, Bruno Penfound, Elissa |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Information Management Research Center (MagIC) - NOVA Information Management School NOVA Information Management School (NOVA IMS) RUN |
dc.contributor.author.fl_str_mv |
Vaz, Eric Cusimano, Michael D. Bação, Fernando Damásio, Bruno Penfound, Elissa |
dc.subject.por.fl_str_mv |
injuries Toronto Canada Morbidity Wellbeing Spatial analysis Biochemistry, Genetics and Molecular Biology(all) Agricultural and Biological Sciences(all) General SDG 3 - Good Health and Well-being SDG 10 - Reduced Inequalities |
topic |
injuries Toronto Canada Morbidity Wellbeing Spatial analysis Biochemistry, Genetics and Molecular Biology(all) Agricultural and Biological Sciences(all) General SDG 3 - Good Health and Well-being SDG 10 - Reduced Inequalities |
description |
Vaz, E., Cusimano, M. D., Bação, F., Damásio, B., & Penfound, E. (2021). Open data and injuries in urban areas: A spatial analytical framework of Toronto using machine learning and spatial regressions. PLoS ONE, 16(March), 1-17. [e0248285]. https://doi.org/10.1371/journal.pone.0248285 |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-03-24T23:27:53Z 2021-03-11 2021-03-11T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/114401 |
url |
http://hdl.handle.net/10362/114401 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1932-6203 PURE: 28829307 https://doi.org/10.1371/journal.pone.0248285 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
17 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138036344160256 |