Development and evaluation of a risk algorithm predicting alcohol dependence after early onset of regular alcohol use

Detalhes bibliográficos
Autor(a) principal: Bharat, Chrianna
Data de Publicação: 2023
Outros Autores: Glantz, Meyer D., Aguilar-Gaxiola, Sergio, Alonso, Jordi, Bruffaerts, Ronny, Bunting, Brendan, Caldas-de-Almeida, José Miguel, Cardoso, Graça, Chardoul, Stephanie, de Jonge, Peter, Gureje, Oye, Haro, Josep Maria, Harris, Meredith G., Karam, Elie G., Kawakami, Norito, Kiejna, Andrzej, Kovess-Masfety, Viviane, Lee, Sing, McGrath, John J., Moskalewicz, Jacek, Navarro-Mateu, Fernando, Rapsey, Charlene, Sampson, Nancy A., Scott, Kate M., Tachimori, Hisateru, ten Have, Margreet, Vilagut, Gemma, Wojtyniak, Bogdan, Xavier, Miguel, Kessler, Ronald C., Degenhardt, Louisa
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/149281
Resumo: The ESEMeD project is funded by the European Commission (Contracts QLG5-1999-01042; SANCO 2004123 and EAHC 20081308). The Portuguese Mental Health Study was carried out by the Department of Mental Health, Faculty of Medical Sciences, NOVA University of Lisbon, with collaboration of the Portuguese Catholic University, and was funded by Champalimaud Foundation, Gulbenkian Foundation, Foundation for Science and Technology (FCT) and Ministry of Health.
id RCAP_d1c3335829cb6d01b91a9989621cabe5
oai_identifier_str oai:run.unl.pt:10362/149281
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Development and evaluation of a risk algorithm predicting alcohol dependence after early onset of regular alcohol useAdolescencealcohol usecalibrationdependencediscriminationmachine learningMedicine (miscellaneous)Psychiatry and Mental healthSDG 3 - Good Health and Well-beingThe ESEMeD project is funded by the European Commission (Contracts QLG5-1999-01042; SANCO 2004123 and EAHC 20081308). The Portuguese Mental Health Study was carried out by the Department of Mental Health, Faculty of Medical Sciences, NOVA University of Lisbon, with collaboration of the Portuguese Catholic University, and was funded by Champalimaud Foundation, Gulbenkian Foundation, Foundation for Science and Technology (FCT) and Ministry of Health.Aims: Likelihood of alcohol dependence (AD) is increased among people who transition to greater levels of alcohol involvement at a younger age. Indicated interventions delivered early may be effective in reducing risk, but could be costly. One way to increase cost-effectiveness would be to develop a prediction model that targeted interventions to the subset of youth with early alcohol use who are at highest risk of subsequent AD. Design: A prediction model was developed for DSM-IV AD onset by age 25 years using an ensemble machine-learning algorithm known as ‘Super Learner’. Shapley additive explanations (SHAP) assessed variable importance. Setting and Participants: Respondents reporting early onset of regular alcohol use (i.e. by 17 years of age) who were aged 25 years or older at interview from 14 representative community surveys conducted in 13 countries as part of WHO's World Mental Health Surveys. Measurements: The primary outcome to be predicted was onset of life-time DSM-IV AD by age 25 as measured using the Composite International Diagnostic Interview, a fully structured diagnostic interview. Findings: AD prevalence by age 25 was 5.1% among the 10 687 individuals who reported drinking alcohol regularly by age 17. The prediction model achieved an external area under the curve [0.78; 95% confidence interval (CI) = 0.74–0.81] higher than any individual candidate risk model (0.73–0.77) and an area under the precision-recall curve of 0.22. Overall calibration was good [integrated calibration index (ICI) = 1.05%]; however, miscalibration was observed at the extreme ends of the distribution of predicted probabilities. Interventions provided to the 20% of people with highest risk would identify 49% of AD cases and require treating four people without AD to reach one with AD. Important predictors of increased risk included younger onset of alcohol use, males, higher cohort alcohol use and more mental disorders. Conclusions: A risk algorithm can be created using data collected at the onset of regular alcohol use to target youth at highest risk of alcohol dependence by early adulthood. Important considerations remain for advancing the development and practical implementation of such models.NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM)Centro de Estudos de Doenças Crónicas (CEDOC)RUNBharat, ChriannaGlantz, Meyer D.Aguilar-Gaxiola, SergioAlonso, JordiBruffaerts, RonnyBunting, BrendanCaldas-de-Almeida, José MiguelCardoso, GraçaChardoul, Stephaniede Jonge, PeterGureje, OyeHaro, Josep MariaHarris, Meredith G.Karam, Elie G.Kawakami, NoritoKiejna, AndrzejKovess-Masfety, VivianeLee, SingMcGrath, John J.Moskalewicz, JacekNavarro-Mateu, FernandoRapsey, CharleneSampson, Nancy A.Scott, Kate M.Tachimori, Hisateruten Have, MargreetVilagut, GemmaWojtyniak, BogdanXavier, MiguelKessler, Ronald C.Degenhardt, Louisa2023-02-15T22:20:51Z20232023-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10362/149281eng0965-2140PURE: 53067616https://doi.org/10.1111/add.16122info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:31:12Zoai:run.unl.pt:10362/149281Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:53:41.704356Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Development and evaluation of a risk algorithm predicting alcohol dependence after early onset of regular alcohol use
title Development and evaluation of a risk algorithm predicting alcohol dependence after early onset of regular alcohol use
spellingShingle Development and evaluation of a risk algorithm predicting alcohol dependence after early onset of regular alcohol use
Bharat, Chrianna
Adolescence
alcohol use
calibration
dependence
discrimination
machine learning
Medicine (miscellaneous)
Psychiatry and Mental health
SDG 3 - Good Health and Well-being
title_short Development and evaluation of a risk algorithm predicting alcohol dependence after early onset of regular alcohol use
title_full Development and evaluation of a risk algorithm predicting alcohol dependence after early onset of regular alcohol use
title_fullStr Development and evaluation of a risk algorithm predicting alcohol dependence after early onset of regular alcohol use
title_full_unstemmed Development and evaluation of a risk algorithm predicting alcohol dependence after early onset of regular alcohol use
title_sort Development and evaluation of a risk algorithm predicting alcohol dependence after early onset of regular alcohol use
author Bharat, Chrianna
author_facet Bharat, Chrianna
Glantz, Meyer D.
Aguilar-Gaxiola, Sergio
Alonso, Jordi
Bruffaerts, Ronny
Bunting, Brendan
Caldas-de-Almeida, José Miguel
Cardoso, Graça
Chardoul, Stephanie
de Jonge, Peter
Gureje, Oye
Haro, Josep Maria
Harris, Meredith G.
Karam, Elie G.
Kawakami, Norito
Kiejna, Andrzej
Kovess-Masfety, Viviane
Lee, Sing
McGrath, John J.
Moskalewicz, Jacek
Navarro-Mateu, Fernando
Rapsey, Charlene
Sampson, Nancy A.
Scott, Kate M.
Tachimori, Hisateru
ten Have, Margreet
Vilagut, Gemma
Wojtyniak, Bogdan
Xavier, Miguel
Kessler, Ronald C.
Degenhardt, Louisa
author_role author
author2 Glantz, Meyer D.
Aguilar-Gaxiola, Sergio
Alonso, Jordi
Bruffaerts, Ronny
Bunting, Brendan
Caldas-de-Almeida, José Miguel
Cardoso, Graça
Chardoul, Stephanie
de Jonge, Peter
Gureje, Oye
Haro, Josep Maria
Harris, Meredith G.
Karam, Elie G.
Kawakami, Norito
Kiejna, Andrzej
Kovess-Masfety, Viviane
Lee, Sing
McGrath, John J.
Moskalewicz, Jacek
Navarro-Mateu, Fernando
Rapsey, Charlene
Sampson, Nancy A.
Scott, Kate M.
Tachimori, Hisateru
ten Have, Margreet
Vilagut, Gemma
Wojtyniak, Bogdan
Xavier, Miguel
Kessler, Ronald C.
Degenhardt, Louisa
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM)
Centro de Estudos de Doenças Crónicas (CEDOC)
RUN
dc.contributor.author.fl_str_mv Bharat, Chrianna
Glantz, Meyer D.
Aguilar-Gaxiola, Sergio
Alonso, Jordi
Bruffaerts, Ronny
Bunting, Brendan
Caldas-de-Almeida, José Miguel
Cardoso, Graça
Chardoul, Stephanie
de Jonge, Peter
Gureje, Oye
Haro, Josep Maria
Harris, Meredith G.
Karam, Elie G.
Kawakami, Norito
Kiejna, Andrzej
Kovess-Masfety, Viviane
Lee, Sing
McGrath, John J.
Moskalewicz, Jacek
Navarro-Mateu, Fernando
Rapsey, Charlene
Sampson, Nancy A.
Scott, Kate M.
Tachimori, Hisateru
ten Have, Margreet
Vilagut, Gemma
Wojtyniak, Bogdan
Xavier, Miguel
Kessler, Ronald C.
Degenhardt, Louisa
dc.subject.por.fl_str_mv Adolescence
alcohol use
calibration
dependence
discrimination
machine learning
Medicine (miscellaneous)
Psychiatry and Mental health
SDG 3 - Good Health and Well-being
topic Adolescence
alcohol use
calibration
dependence
discrimination
machine learning
Medicine (miscellaneous)
Psychiatry and Mental health
SDG 3 - Good Health and Well-being
description The ESEMeD project is funded by the European Commission (Contracts QLG5-1999-01042; SANCO 2004123 and EAHC 20081308). The Portuguese Mental Health Study was carried out by the Department of Mental Health, Faculty of Medical Sciences, NOVA University of Lisbon, with collaboration of the Portuguese Catholic University, and was funded by Champalimaud Foundation, Gulbenkian Foundation, Foundation for Science and Technology (FCT) and Ministry of Health.
publishDate 2023
dc.date.none.fl_str_mv 2023-02-15T22:20:51Z
2023
2023-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/149281
url http://hdl.handle.net/10362/149281
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0965-2140
PURE: 53067616
https://doi.org/10.1111/add.16122
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138127267233792