In-situ enzymatic generation of hydrogen peroxide for bleaching purposes

Detalhes bibliográficos
Autor(a) principal: López, C.
Data de Publicação: 2008
Outros Autores: Paulo, Artur Cavaco
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/17282
Resumo: Bleaching detergent formulations contain environmentally unfriendly bleaching agents (perborates and percarbonates), which cause aquatic eutrophication, although without these compounds detergents are much less efficient for the washing processes. In an effort to replace these compounds, in this study, hydrogen peroxide was generated as a bleaching compound by means of enzymatic reactions. Three different pathways were investigated. The first one was the H2O2 production from glucose by glucose oxidase. The second one was the production of H2O2 from carboxymethylcellulose (CMC) by the action of both cellulase, which promotes the hydrolysis of the polymeric chain, and glucose oxidase, which oxidizes the smaller fractions to produce H2O2. Finally, H2O2 was also obtained from ethanol, which is present in liquid detergents, by the action of the enzyme alcohol oxidase. In the search for maximal peroxide production, substrate concentration and enzymatic activities were optimized. The effect of H2O2 produced in the washing process was simulated by means of a process of cotton bleaching. Although enzymatic-reaction oxidations produced higher levels of hydrogen peroxide (up to 1 g/L after 8 h), higher improvement of cotton whiteness was achieved from CMC and from ethanol. The milder conditions of temperature and pH, biodegradability and less consumption of water and energy are advantageous for enzymes as good substitutes for H2O2 precursors and make them appropriate to be considered in detergent formulations. These enzymes could be combined with other oxidative enzymes, such as peroxidases, in order to lower the required temperature and use a pH close to the neutral value during the bleaching processes.
id RCAP_d1e66473fbe747e2dda5523a55dffb26
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/17282
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling In-situ enzymatic generation of hydrogen peroxide for bleaching purposesDetergentsHydrogen peroxideOxidative enzymesScience & TechnologyBleaching detergent formulations contain environmentally unfriendly bleaching agents (perborates and percarbonates), which cause aquatic eutrophication, although without these compounds detergents are much less efficient for the washing processes. In an effort to replace these compounds, in this study, hydrogen peroxide was generated as a bleaching compound by means of enzymatic reactions. Three different pathways were investigated. The first one was the H2O2 production from glucose by glucose oxidase. The second one was the production of H2O2 from carboxymethylcellulose (CMC) by the action of both cellulase, which promotes the hydrolysis of the polymeric chain, and glucose oxidase, which oxidizes the smaller fractions to produce H2O2. Finally, H2O2 was also obtained from ethanol, which is present in liquid detergents, by the action of the enzyme alcohol oxidase. In the search for maximal peroxide production, substrate concentration and enzymatic activities were optimized. The effect of H2O2 produced in the washing process was simulated by means of a process of cotton bleaching. Although enzymatic-reaction oxidations produced higher levels of hydrogen peroxide (up to 1 g/L after 8 h), higher improvement of cotton whiteness was achieved from CMC and from ethanol. The milder conditions of temperature and pH, biodegradability and less consumption of water and energy are advantageous for enzymes as good substitutes for H2O2 precursors and make them appropriate to be considered in detergent formulations. These enzymes could be combined with other oxidative enzymes, such as peroxidases, in order to lower the required temperature and use a pH close to the neutral value during the bleaching processes.WileyUniversidade do MinhoLópez, C.Paulo, Artur Cavaco20082008-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/17282eng1618-286310.1002/elsc.200700060info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:52:38Zoai:repositorium.sdum.uminho.pt:1822/17282Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:51:48.476672Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv In-situ enzymatic generation of hydrogen peroxide for bleaching purposes
title In-situ enzymatic generation of hydrogen peroxide for bleaching purposes
spellingShingle In-situ enzymatic generation of hydrogen peroxide for bleaching purposes
López, C.
Detergents
Hydrogen peroxide
Oxidative enzymes
Science & Technology
title_short In-situ enzymatic generation of hydrogen peroxide for bleaching purposes
title_full In-situ enzymatic generation of hydrogen peroxide for bleaching purposes
title_fullStr In-situ enzymatic generation of hydrogen peroxide for bleaching purposes
title_full_unstemmed In-situ enzymatic generation of hydrogen peroxide for bleaching purposes
title_sort In-situ enzymatic generation of hydrogen peroxide for bleaching purposes
author López, C.
author_facet López, C.
Paulo, Artur Cavaco
author_role author
author2 Paulo, Artur Cavaco
author2_role author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv López, C.
Paulo, Artur Cavaco
dc.subject.por.fl_str_mv Detergents
Hydrogen peroxide
Oxidative enzymes
Science & Technology
topic Detergents
Hydrogen peroxide
Oxidative enzymes
Science & Technology
description Bleaching detergent formulations contain environmentally unfriendly bleaching agents (perborates and percarbonates), which cause aquatic eutrophication, although without these compounds detergents are much less efficient for the washing processes. In an effort to replace these compounds, in this study, hydrogen peroxide was generated as a bleaching compound by means of enzymatic reactions. Three different pathways were investigated. The first one was the H2O2 production from glucose by glucose oxidase. The second one was the production of H2O2 from carboxymethylcellulose (CMC) by the action of both cellulase, which promotes the hydrolysis of the polymeric chain, and glucose oxidase, which oxidizes the smaller fractions to produce H2O2. Finally, H2O2 was also obtained from ethanol, which is present in liquid detergents, by the action of the enzyme alcohol oxidase. In the search for maximal peroxide production, substrate concentration and enzymatic activities were optimized. The effect of H2O2 produced in the washing process was simulated by means of a process of cotton bleaching. Although enzymatic-reaction oxidations produced higher levels of hydrogen peroxide (up to 1 g/L after 8 h), higher improvement of cotton whiteness was achieved from CMC and from ethanol. The milder conditions of temperature and pH, biodegradability and less consumption of water and energy are advantageous for enzymes as good substitutes for H2O2 precursors and make them appropriate to be considered in detergent formulations. These enzymes could be combined with other oxidative enzymes, such as peroxidases, in order to lower the required temperature and use a pH close to the neutral value during the bleaching processes.
publishDate 2008
dc.date.none.fl_str_mv 2008
2008-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/17282
url http://hdl.handle.net/1822/17282
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1618-2863
10.1002/elsc.200700060
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133107745456128