Optical clearing mechanisms characterization in muscle
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/8205 |
Resumo: | Optical immersion clearing is a technique that has been widely studied for more than two decades and that is used to originate a temporary transparency effect in biological tissues. If applied in cooperation with clinical methods it provides optimization of diagnosis and treatment procedures. This technique turns biological tissues more transparent through two main mechanisms — tissue dehydration and refractive index (RI) matching between tissue components. Such matching is obtained by partial replacement of interstitial water by a biocompatible agent that presents higher RI and it can be completely reversible by natural rehydration in vivo or by assisted rehydration in ex vivo tissues. Experimental data to characterize and discriminate between the two mechanisms and to find new ones are necessary. Using a simple method, based on collimated transmittance and thickness measurements made from muscle samples under treatment, we have estimated the diffusion properties of glucose, ethylene glycol (EG) and water that were used to perform such characterization and discrimination. Comparing these properties with data from literature that characterize their diffusion in water we have observed that muscle cell membrane permeability limits agent and water diffusion in the muscle. The same experimental data has allowed to calculate the optical clearing (OC) efficiency and make an interpretation of the internal changes that occurred in muscle during the treatments. The same methodology can now be used to perform similar studies with other agents and in other tissues in order to solve engineering problems at design of inexpensive and robust technologies for a considerable improvement of optical tomographic techniques with better contrast and in-depth imaging. |
id |
RCAP_d20ad65575c8c21e9ac087b523bb733d |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/8205 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Optical clearing mechanisms characterization in muscleCollimated transmittanceAgent diffusivityTissue dehydrationThickness variationRefractive index matchingGlucoseEthylene GlycolOptical immersion clearing is a technique that has been widely studied for more than two decades and that is used to originate a temporary transparency effect in biological tissues. If applied in cooperation with clinical methods it provides optimization of diagnosis and treatment procedures. This technique turns biological tissues more transparent through two main mechanisms — tissue dehydration and refractive index (RI) matching between tissue components. Such matching is obtained by partial replacement of interstitial water by a biocompatible agent that presents higher RI and it can be completely reversible by natural rehydration in vivo or by assisted rehydration in ex vivo tissues. Experimental data to characterize and discriminate between the two mechanisms and to find new ones are necessary. Using a simple method, based on collimated transmittance and thickness measurements made from muscle samples under treatment, we have estimated the diffusion properties of glucose, ethylene glycol (EG) and water that were used to perform such characterization and discrimination. Comparing these properties with data from literature that characterize their diffusion in water we have observed that muscle cell membrane permeability limits agent and water diffusion in the muscle. The same experimental data has allowed to calculate the optical clearing (OC) efficiency and make an interpretation of the internal changes that occurred in muscle during the treatments. The same methodology can now be used to perform similar studies with other agents and in other tissues in order to solve engineering problems at design of inexpensive and robust technologies for a considerable improvement of optical tomographic techniques with better contrast and in-depth imaging.World ScientificRepositório Científico do Instituto Politécnico do PortoOliveira, LuísCarvalho, M. InêsNogueira, ElisabeteTuchin, Valery V.2016-05-16T11:26:10Z2016-04-192016-04-19T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/8205eng1793-545810.1142/S1793545816500358info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T12:49:27Zoai:recipp.ipp.pt:10400.22/8205Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:29:03.175272Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Optical clearing mechanisms characterization in muscle |
title |
Optical clearing mechanisms characterization in muscle |
spellingShingle |
Optical clearing mechanisms characterization in muscle Oliveira, Luís Collimated transmittance Agent diffusivity Tissue dehydration Thickness variation Refractive index matching Glucose Ethylene Glycol |
title_short |
Optical clearing mechanisms characterization in muscle |
title_full |
Optical clearing mechanisms characterization in muscle |
title_fullStr |
Optical clearing mechanisms characterization in muscle |
title_full_unstemmed |
Optical clearing mechanisms characterization in muscle |
title_sort |
Optical clearing mechanisms characterization in muscle |
author |
Oliveira, Luís |
author_facet |
Oliveira, Luís Carvalho, M. Inês Nogueira, Elisabete Tuchin, Valery V. |
author_role |
author |
author2 |
Carvalho, M. Inês Nogueira, Elisabete Tuchin, Valery V. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Oliveira, Luís Carvalho, M. Inês Nogueira, Elisabete Tuchin, Valery V. |
dc.subject.por.fl_str_mv |
Collimated transmittance Agent diffusivity Tissue dehydration Thickness variation Refractive index matching Glucose Ethylene Glycol |
topic |
Collimated transmittance Agent diffusivity Tissue dehydration Thickness variation Refractive index matching Glucose Ethylene Glycol |
description |
Optical immersion clearing is a technique that has been widely studied for more than two decades and that is used to originate a temporary transparency effect in biological tissues. If applied in cooperation with clinical methods it provides optimization of diagnosis and treatment procedures. This technique turns biological tissues more transparent through two main mechanisms — tissue dehydration and refractive index (RI) matching between tissue components. Such matching is obtained by partial replacement of interstitial water by a biocompatible agent that presents higher RI and it can be completely reversible by natural rehydration in vivo or by assisted rehydration in ex vivo tissues. Experimental data to characterize and discriminate between the two mechanisms and to find new ones are necessary. Using a simple method, based on collimated transmittance and thickness measurements made from muscle samples under treatment, we have estimated the diffusion properties of glucose, ethylene glycol (EG) and water that were used to perform such characterization and discrimination. Comparing these properties with data from literature that characterize their diffusion in water we have observed that muscle cell membrane permeability limits agent and water diffusion in the muscle. The same experimental data has allowed to calculate the optical clearing (OC) efficiency and make an interpretation of the internal changes that occurred in muscle during the treatments. The same methodology can now be used to perform similar studies with other agents and in other tissues in order to solve engineering problems at design of inexpensive and robust technologies for a considerable improvement of optical tomographic techniques with better contrast and in-depth imaging. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-05-16T11:26:10Z 2016-04-19 2016-04-19T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/8205 |
url |
http://hdl.handle.net/10400.22/8205 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1793-5458 10.1142/S1793545816500358 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
World Scientific |
publisher.none.fl_str_mv |
World Scientific |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131387148632064 |