Fraud: and anomaly detection in healthcare: an unsupervised machine learning approach
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/132860 |
Resumo: | Internship Report presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Business Analytics |
id |
RCAP_d214b34351185c6304cd323d9adb632e |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/132860 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Fraud: and anomaly detection in healthcare: an unsupervised machine learning approachFraud detectionAnomaly detectionHealthcare dataUnsupervised learningClusteringMachine learningIsolation forestNetwork analysisCancellation PredictionInternship Report presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Business AnalyticsFraud and abuse in healthcare are critical and cause significant damage. However, the auditing of healthcare encounters is cumbersome, and the detection of fraud and abuse is challenging and binds capacity. Data-driven fraud and anomaly detection models can help to overcome these issues. This work proposes several unsupervised learning methods to understand patterns and detect abnormal healthcare encounters which might be fraudulent or abusive. The ensemble of models is split into sub-processes and applied on a healthcare data set belonging to Future Healthcare group, a Portuguese group acting in health insurance. One major part of the ensemble is the implementation of the Isolation Forest algorithm, which achieves good results in precision and recall and detect new potential fraudulent abnormal behaviour. Due to unlabelled data and the application of unsupervised learning methods, the proposed model detects new fraudulent patterns instead of learning from existing patterns. Besides the model to predict whether new incoming medical encounters are fraudulent or abusive, this work illustrates a visual method to detect suspicious networks among medical providers. In addition, this work contains an approach to predict whether a customer will cancel the insurance based on anomalous behaviour. This internship report aims to contribute to science and be public, even though some parts could not be explained in detail due to confidentiality.António, Nuno Miguel da ConceiçãoRUNDangers, Lennart2022-02-14T17:15:19Z2022-01-192022-01-19T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/132860TID:202948196enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:11:32Zoai:run.unl.pt:10362/132860Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:47:37.230678Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Fraud: and anomaly detection in healthcare: an unsupervised machine learning approach |
title |
Fraud: and anomaly detection in healthcare: an unsupervised machine learning approach |
spellingShingle |
Fraud: and anomaly detection in healthcare: an unsupervised machine learning approach Dangers, Lennart Fraud detection Anomaly detection Healthcare data Unsupervised learning Clustering Machine learning Isolation forest Network analysis Cancellation Prediction |
title_short |
Fraud: and anomaly detection in healthcare: an unsupervised machine learning approach |
title_full |
Fraud: and anomaly detection in healthcare: an unsupervised machine learning approach |
title_fullStr |
Fraud: and anomaly detection in healthcare: an unsupervised machine learning approach |
title_full_unstemmed |
Fraud: and anomaly detection in healthcare: an unsupervised machine learning approach |
title_sort |
Fraud: and anomaly detection in healthcare: an unsupervised machine learning approach |
author |
Dangers, Lennart |
author_facet |
Dangers, Lennart |
author_role |
author |
dc.contributor.none.fl_str_mv |
António, Nuno Miguel da Conceição RUN |
dc.contributor.author.fl_str_mv |
Dangers, Lennart |
dc.subject.por.fl_str_mv |
Fraud detection Anomaly detection Healthcare data Unsupervised learning Clustering Machine learning Isolation forest Network analysis Cancellation Prediction |
topic |
Fraud detection Anomaly detection Healthcare data Unsupervised learning Clustering Machine learning Isolation forest Network analysis Cancellation Prediction |
description |
Internship Report presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Business Analytics |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-02-14T17:15:19Z 2022-01-19 2022-01-19T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/132860 TID:202948196 |
url |
http://hdl.handle.net/10362/132860 |
identifier_str_mv |
TID:202948196 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138078782128128 |