Mate choice drives evolutionary stability in a hybrid complex
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/17577 |
Resumo: | Previous studies have shown that assortative mating acts as a driver of speciation by countering hybridization between two populations of the same species (pre-zygotic isolation) or through mate choice among the hybrids (hybrid speciation). In both speciation types, assortative mating promotes speciation over a transient hybridization stage. We studied mate choice in a hybrid vertebrate complex, the allopolyploid fish Squalius alburnoides. This complex is composed by several genomotypes connected by an intricate reproductive dynamics. We developed a model that predicts the hybrid complex can persist when females exhibit particular mate choice patterns. Our model is able to reproduce the diversity of population dynamic outcomes found in nature, namely the dominance of the triploids and the dominance of the tetraploids, depending on female mate choice patterns and frequency of the parental species. Experimental mate choice trials showed that females exhibit the preferences predicted by the model. Thus, despite the known role of assortative mating in driving speciation, our findings suggest that certain mate choice patterns can instead hinder speciation and support the persistence of hybrids over time without speciation or extinction. |
id |
RCAP_d2823acec06bedb58960977014664219 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/17577 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Mate choice drives evolutionary stability in a hybrid complexPrevious studies have shown that assortative mating acts as a driver of speciation by countering hybridization between two populations of the same species (pre-zygotic isolation) or through mate choice among the hybrids (hybrid speciation). In both speciation types, assortative mating promotes speciation over a transient hybridization stage. We studied mate choice in a hybrid vertebrate complex, the allopolyploid fish Squalius alburnoides. This complex is composed by several genomotypes connected by an intricate reproductive dynamics. We developed a model that predicts the hybrid complex can persist when females exhibit particular mate choice patterns. Our model is able to reproduce the diversity of population dynamic outcomes found in nature, namely the dominance of the triploids and the dominance of the tetraploids, depending on female mate choice patterns and frequency of the parental species. Experimental mate choice trials showed that females exhibit the preferences predicted by the model. Thus, despite the known role of assortative mating in driving speciation, our findings suggest that certain mate choice patterns can instead hinder speciation and support the persistence of hybrids over time without speciation or extinction.Public Library of Science2017-05-25T15:15:29Z2015-01-01T00:00:00Z2015info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/17577eng1932-620310.1371/journal.pone.0132760Morgado-Santos, MiguelPereira, Henrique MiguelVicente, LuísCollares-Pereira, Maria Joãoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:31:40Zoai:ria.ua.pt:10773/17577Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:51:57.482797Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Mate choice drives evolutionary stability in a hybrid complex |
title |
Mate choice drives evolutionary stability in a hybrid complex |
spellingShingle |
Mate choice drives evolutionary stability in a hybrid complex Morgado-Santos, Miguel |
title_short |
Mate choice drives evolutionary stability in a hybrid complex |
title_full |
Mate choice drives evolutionary stability in a hybrid complex |
title_fullStr |
Mate choice drives evolutionary stability in a hybrid complex |
title_full_unstemmed |
Mate choice drives evolutionary stability in a hybrid complex |
title_sort |
Mate choice drives evolutionary stability in a hybrid complex |
author |
Morgado-Santos, Miguel |
author_facet |
Morgado-Santos, Miguel Pereira, Henrique Miguel Vicente, Luís Collares-Pereira, Maria João |
author_role |
author |
author2 |
Pereira, Henrique Miguel Vicente, Luís Collares-Pereira, Maria João |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Morgado-Santos, Miguel Pereira, Henrique Miguel Vicente, Luís Collares-Pereira, Maria João |
description |
Previous studies have shown that assortative mating acts as a driver of speciation by countering hybridization between two populations of the same species (pre-zygotic isolation) or through mate choice among the hybrids (hybrid speciation). In both speciation types, assortative mating promotes speciation over a transient hybridization stage. We studied mate choice in a hybrid vertebrate complex, the allopolyploid fish Squalius alburnoides. This complex is composed by several genomotypes connected by an intricate reproductive dynamics. We developed a model that predicts the hybrid complex can persist when females exhibit particular mate choice patterns. Our model is able to reproduce the diversity of population dynamic outcomes found in nature, namely the dominance of the triploids and the dominance of the tetraploids, depending on female mate choice patterns and frequency of the parental species. Experimental mate choice trials showed that females exhibit the preferences predicted by the model. Thus, despite the known role of assortative mating in driving speciation, our findings suggest that certain mate choice patterns can instead hinder speciation and support the persistence of hybrids over time without speciation or extinction. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-01-01T00:00:00Z 2015 2017-05-25T15:15:29Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/17577 |
url |
http://hdl.handle.net/10773/17577 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1932-6203 10.1371/journal.pone.0132760 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Public Library of Science |
publisher.none.fl_str_mv |
Public Library of Science |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137569810677760 |