Robust Clustering Method for the Detection of Outliers: Using AIC to Select the Number of Clusters
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | |
Tipo de documento: | Livro |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://repositorio-aberto.up.pt/handle/10216/65809 |
Resumo: | In [14] we proposed a method to detect outliers in multivariate data basedon clustering and robust estimators. To implement this method in practice it is necessaryto choose a clustering method, a pair of location and scatter estimators, andthe number of clusters, k. After several simulation experiments it was possible togive a number of guidelines regarding the first two choices. However the choice ofthe number of clusters depends entirely on the structure of the particular data setunder study. Our suggestion is to try several values of k (e.g. from 1 to a maximumreasonable k which depends on the number of observations and on the number ofvariables) and select k minimizing an adapted AIC. In this paper we analyze thisAIC based criterion for choosing the number of clusters k (and also the clusteringmethod and the location and scatter estimators) by applying it to several simulateddata sets with and without outliers. |
id |
RCAP_d2ad95189f0822dde740dff9fbb490f2 |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/65809 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Robust Clustering Method for the Detection of Outliers: Using AIC to Select the Number of ClustersCiências exactas e naturaisNatural sciencesIn [14] we proposed a method to detect outliers in multivariate data basedon clustering and robust estimators. To implement this method in practice it is necessaryto choose a clustering method, a pair of location and scatter estimators, andthe number of clusters, k. After several simulation experiments it was possible togive a number of guidelines regarding the first two choices. However the choice ofthe number of clusters depends entirely on the structure of the particular data setunder study. Our suggestion is to try several values of k (e.g. from 1 to a maximumreasonable k which depends on the number of observations and on the number ofvariables) and select k minimizing an adapted AIC. In this paper we analyze thisAIC based criterion for choosing the number of clusters k (and also the clusteringmethod and the location and scatter estimators) by applying it to several simulateddata sets with and without outliers.20132013-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookapplication/pdfhttps://repositorio-aberto.up.pt/handle/10216/65809engCarla Santos PereiraAna M. Piresinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T15:38:02Zoai:repositorio-aberto.up.pt:10216/65809Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:28:19.124388Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Robust Clustering Method for the Detection of Outliers: Using AIC to Select the Number of Clusters |
title |
Robust Clustering Method for the Detection of Outliers: Using AIC to Select the Number of Clusters |
spellingShingle |
Robust Clustering Method for the Detection of Outliers: Using AIC to Select the Number of Clusters Carla Santos Pereira Ciências exactas e naturais Natural sciences |
title_short |
Robust Clustering Method for the Detection of Outliers: Using AIC to Select the Number of Clusters |
title_full |
Robust Clustering Method for the Detection of Outliers: Using AIC to Select the Number of Clusters |
title_fullStr |
Robust Clustering Method for the Detection of Outliers: Using AIC to Select the Number of Clusters |
title_full_unstemmed |
Robust Clustering Method for the Detection of Outliers: Using AIC to Select the Number of Clusters |
title_sort |
Robust Clustering Method for the Detection of Outliers: Using AIC to Select the Number of Clusters |
author |
Carla Santos Pereira |
author_facet |
Carla Santos Pereira Ana M. Pires |
author_role |
author |
author2 |
Ana M. Pires |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Carla Santos Pereira Ana M. Pires |
dc.subject.por.fl_str_mv |
Ciências exactas e naturais Natural sciences |
topic |
Ciências exactas e naturais Natural sciences |
description |
In [14] we proposed a method to detect outliers in multivariate data basedon clustering and robust estimators. To implement this method in practice it is necessaryto choose a clustering method, a pair of location and scatter estimators, andthe number of clusters, k. After several simulation experiments it was possible togive a number of guidelines regarding the first two choices. However the choice ofthe number of clusters depends entirely on the structure of the particular data setunder study. Our suggestion is to try several values of k (e.g. from 1 to a maximumreasonable k which depends on the number of observations and on the number ofvariables) and select k minimizing an adapted AIC. In this paper we analyze thisAIC based criterion for choosing the number of clusters k (and also the clusteringmethod and the location and scatter estimators) by applying it to several simulateddata sets with and without outliers. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013 2013-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/book |
format |
book |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio-aberto.up.pt/handle/10216/65809 |
url |
https://repositorio-aberto.up.pt/handle/10216/65809 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136195059384320 |