Robust Clustering Method for the Detection of Outliers: Using AIC to Select the Number of Clusters

Detalhes bibliográficos
Autor(a) principal: Carla Santos Pereira
Data de Publicação: 2013
Outros Autores: Ana M. Pires
Tipo de documento: Livro
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://repositorio-aberto.up.pt/handle/10216/65809
Resumo: In [14] we proposed a method to detect outliers in multivariate data basedon clustering and robust estimators. To implement this method in practice it is necessaryto choose a clustering method, a pair of location and scatter estimators, andthe number of clusters, k. After several simulation experiments it was possible togive a number of guidelines regarding the first two choices. However the choice ofthe number of clusters depends entirely on the structure of the particular data setunder study. Our suggestion is to try several values of k (e.g. from 1 to a maximumreasonable k which depends on the number of observations and on the number ofvariables) and select k minimizing an adapted AIC. In this paper we analyze thisAIC based criterion for choosing the number of clusters k (and also the clusteringmethod and the location and scatter estimators) by applying it to several simulateddata sets with and without outliers.
id RCAP_d2ad95189f0822dde740dff9fbb490f2
oai_identifier_str oai:repositorio-aberto.up.pt:10216/65809
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Robust Clustering Method for the Detection of Outliers: Using AIC to Select the Number of ClustersCiências exactas e naturaisNatural sciencesIn [14] we proposed a method to detect outliers in multivariate data basedon clustering and robust estimators. To implement this method in practice it is necessaryto choose a clustering method, a pair of location and scatter estimators, andthe number of clusters, k. After several simulation experiments it was possible togive a number of guidelines regarding the first two choices. However the choice ofthe number of clusters depends entirely on the structure of the particular data setunder study. Our suggestion is to try several values of k (e.g. from 1 to a maximumreasonable k which depends on the number of observations and on the number ofvariables) and select k minimizing an adapted AIC. In this paper we analyze thisAIC based criterion for choosing the number of clusters k (and also the clusteringmethod and the location and scatter estimators) by applying it to several simulateddata sets with and without outliers.20132013-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookapplication/pdfhttps://repositorio-aberto.up.pt/handle/10216/65809engCarla Santos PereiraAna M. Piresinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T15:38:02Zoai:repositorio-aberto.up.pt:10216/65809Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:28:19.124388Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Robust Clustering Method for the Detection of Outliers: Using AIC to Select the Number of Clusters
title Robust Clustering Method for the Detection of Outliers: Using AIC to Select the Number of Clusters
spellingShingle Robust Clustering Method for the Detection of Outliers: Using AIC to Select the Number of Clusters
Carla Santos Pereira
Ciências exactas e naturais
Natural sciences
title_short Robust Clustering Method for the Detection of Outliers: Using AIC to Select the Number of Clusters
title_full Robust Clustering Method for the Detection of Outliers: Using AIC to Select the Number of Clusters
title_fullStr Robust Clustering Method for the Detection of Outliers: Using AIC to Select the Number of Clusters
title_full_unstemmed Robust Clustering Method for the Detection of Outliers: Using AIC to Select the Number of Clusters
title_sort Robust Clustering Method for the Detection of Outliers: Using AIC to Select the Number of Clusters
author Carla Santos Pereira
author_facet Carla Santos Pereira
Ana M. Pires
author_role author
author2 Ana M. Pires
author2_role author
dc.contributor.author.fl_str_mv Carla Santos Pereira
Ana M. Pires
dc.subject.por.fl_str_mv Ciências exactas e naturais
Natural sciences
topic Ciências exactas e naturais
Natural sciences
description In [14] we proposed a method to detect outliers in multivariate data basedon clustering and robust estimators. To implement this method in practice it is necessaryto choose a clustering method, a pair of location and scatter estimators, andthe number of clusters, k. After several simulation experiments it was possible togive a number of guidelines regarding the first two choices. However the choice ofthe number of clusters depends entirely on the structure of the particular data setunder study. Our suggestion is to try several values of k (e.g. from 1 to a maximumreasonable k which depends on the number of observations and on the number ofvariables) and select k minimizing an adapted AIC. In this paper we analyze thisAIC based criterion for choosing the number of clusters k (and also the clusteringmethod and the location and scatter estimators) by applying it to several simulateddata sets with and without outliers.
publishDate 2013
dc.date.none.fl_str_mv 2013
2013-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/book
format book
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio-aberto.up.pt/handle/10216/65809
url https://repositorio-aberto.up.pt/handle/10216/65809
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136195059384320