Embedding Gauss–Bonnet scalarization models in higher dimensional topological theories

Detalhes bibliográficos
Autor(a) principal: Herdeiro, Carlos
Data de Publicação: 2021
Outros Autores: Radu, Eugen, Tchrakian, D. H.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/31539
Resumo: In the presence of appropriate non-minimal couplings between a scalar field and the curvature squared Gauss–Bonnet (GB) term, compact objects such as neutron stars and black holes (BHs) can spontaneously scalarize, becoming a preferred vacuum. Such strong gravity phase transitions have attracted considerable attention recently. The non-minimal coupling functions that allow this mechanism are, however, always postulated ad hoc. Here, we point out that families of such functions naturally emerge in the context of Higgs–Chern–Simons gravity models, which are found as dimensionally descents of higher dimensional, purely topological, Chern–Pontryagin non-Abelian densities. As a proof of concept, we study spherically symmetric scalarized BH solutions in a particular Einstein-GB-scalar field model, whose coupling is obtained from this construction, pointing out novel features and caveats thereof. The possibility of vectorization is also discussed, since this construction also originates vector fields non-minimally coupled to the GB invariant.
id RCAP_d3369d406d3b7e7be0fbb61c08a2351d
oai_identifier_str oai:ria.ua.pt:10773/31539
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Embedding Gauss–Bonnet scalarization models in higher dimensional topological theoriesBlack holesScalarizationHiggs–Chern–Simons gravityIn the presence of appropriate non-minimal couplings between a scalar field and the curvature squared Gauss–Bonnet (GB) term, compact objects such as neutron stars and black holes (BHs) can spontaneously scalarize, becoming a preferred vacuum. Such strong gravity phase transitions have attracted considerable attention recently. The non-minimal coupling functions that allow this mechanism are, however, always postulated ad hoc. Here, we point out that families of such functions naturally emerge in the context of Higgs–Chern–Simons gravity models, which are found as dimensionally descents of higher dimensional, purely topological, Chern–Pontryagin non-Abelian densities. As a proof of concept, we study spherically symmetric scalarized BH solutions in a particular Einstein-GB-scalar field model, whose coupling is obtained from this construction, pointing out novel features and caveats thereof. The possibility of vectorization is also discussed, since this construction also originates vector fields non-minimally coupled to the GB invariant.MDPI2021-07-08T16:07:33Z2021-04-02T00:00:00Z2021-04-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/31539eng10.3390/sym13040590Herdeiro, CarlosRadu, EugenTchrakian, D. H.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:00:52Zoai:ria.ua.pt:10773/31539Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:03:23.464403Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Embedding Gauss–Bonnet scalarization models in higher dimensional topological theories
title Embedding Gauss–Bonnet scalarization models in higher dimensional topological theories
spellingShingle Embedding Gauss–Bonnet scalarization models in higher dimensional topological theories
Herdeiro, Carlos
Black holes
Scalarization
Higgs–Chern–Simons gravity
title_short Embedding Gauss–Bonnet scalarization models in higher dimensional topological theories
title_full Embedding Gauss–Bonnet scalarization models in higher dimensional topological theories
title_fullStr Embedding Gauss–Bonnet scalarization models in higher dimensional topological theories
title_full_unstemmed Embedding Gauss–Bonnet scalarization models in higher dimensional topological theories
title_sort Embedding Gauss–Bonnet scalarization models in higher dimensional topological theories
author Herdeiro, Carlos
author_facet Herdeiro, Carlos
Radu, Eugen
Tchrakian, D. H.
author_role author
author2 Radu, Eugen
Tchrakian, D. H.
author2_role author
author
dc.contributor.author.fl_str_mv Herdeiro, Carlos
Radu, Eugen
Tchrakian, D. H.
dc.subject.por.fl_str_mv Black holes
Scalarization
Higgs–Chern–Simons gravity
topic Black holes
Scalarization
Higgs–Chern–Simons gravity
description In the presence of appropriate non-minimal couplings between a scalar field and the curvature squared Gauss–Bonnet (GB) term, compact objects such as neutron stars and black holes (BHs) can spontaneously scalarize, becoming a preferred vacuum. Such strong gravity phase transitions have attracted considerable attention recently. The non-minimal coupling functions that allow this mechanism are, however, always postulated ad hoc. Here, we point out that families of such functions naturally emerge in the context of Higgs–Chern–Simons gravity models, which are found as dimensionally descents of higher dimensional, purely topological, Chern–Pontryagin non-Abelian densities. As a proof of concept, we study spherically symmetric scalarized BH solutions in a particular Einstein-GB-scalar field model, whose coupling is obtained from this construction, pointing out novel features and caveats thereof. The possibility of vectorization is also discussed, since this construction also originates vector fields non-minimally coupled to the GB invariant.
publishDate 2021
dc.date.none.fl_str_mv 2021-07-08T16:07:33Z
2021-04-02T00:00:00Z
2021-04-02
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/31539
url http://hdl.handle.net/10773/31539
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.3390/sym13040590
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137689183715328