Embedding Gauss–Bonnet scalarization models in higher dimensional topological theories
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/31539 |
Resumo: | In the presence of appropriate non-minimal couplings between a scalar field and the curvature squared Gauss–Bonnet (GB) term, compact objects such as neutron stars and black holes (BHs) can spontaneously scalarize, becoming a preferred vacuum. Such strong gravity phase transitions have attracted considerable attention recently. The non-minimal coupling functions that allow this mechanism are, however, always postulated ad hoc. Here, we point out that families of such functions naturally emerge in the context of Higgs–Chern–Simons gravity models, which are found as dimensionally descents of higher dimensional, purely topological, Chern–Pontryagin non-Abelian densities. As a proof of concept, we study spherically symmetric scalarized BH solutions in a particular Einstein-GB-scalar field model, whose coupling is obtained from this construction, pointing out novel features and caveats thereof. The possibility of vectorization is also discussed, since this construction also originates vector fields non-minimally coupled to the GB invariant. |
id |
RCAP_d3369d406d3b7e7be0fbb61c08a2351d |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/31539 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Embedding Gauss–Bonnet scalarization models in higher dimensional topological theoriesBlack holesScalarizationHiggs–Chern–Simons gravityIn the presence of appropriate non-minimal couplings between a scalar field and the curvature squared Gauss–Bonnet (GB) term, compact objects such as neutron stars and black holes (BHs) can spontaneously scalarize, becoming a preferred vacuum. Such strong gravity phase transitions have attracted considerable attention recently. The non-minimal coupling functions that allow this mechanism are, however, always postulated ad hoc. Here, we point out that families of such functions naturally emerge in the context of Higgs–Chern–Simons gravity models, which are found as dimensionally descents of higher dimensional, purely topological, Chern–Pontryagin non-Abelian densities. As a proof of concept, we study spherically symmetric scalarized BH solutions in a particular Einstein-GB-scalar field model, whose coupling is obtained from this construction, pointing out novel features and caveats thereof. The possibility of vectorization is also discussed, since this construction also originates vector fields non-minimally coupled to the GB invariant.MDPI2021-07-08T16:07:33Z2021-04-02T00:00:00Z2021-04-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/31539eng10.3390/sym13040590Herdeiro, CarlosRadu, EugenTchrakian, D. H.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:00:52Zoai:ria.ua.pt:10773/31539Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:03:23.464403Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Embedding Gauss–Bonnet scalarization models in higher dimensional topological theories |
title |
Embedding Gauss–Bonnet scalarization models in higher dimensional topological theories |
spellingShingle |
Embedding Gauss–Bonnet scalarization models in higher dimensional topological theories Herdeiro, Carlos Black holes Scalarization Higgs–Chern–Simons gravity |
title_short |
Embedding Gauss–Bonnet scalarization models in higher dimensional topological theories |
title_full |
Embedding Gauss–Bonnet scalarization models in higher dimensional topological theories |
title_fullStr |
Embedding Gauss–Bonnet scalarization models in higher dimensional topological theories |
title_full_unstemmed |
Embedding Gauss–Bonnet scalarization models in higher dimensional topological theories |
title_sort |
Embedding Gauss–Bonnet scalarization models in higher dimensional topological theories |
author |
Herdeiro, Carlos |
author_facet |
Herdeiro, Carlos Radu, Eugen Tchrakian, D. H. |
author_role |
author |
author2 |
Radu, Eugen Tchrakian, D. H. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Herdeiro, Carlos Radu, Eugen Tchrakian, D. H. |
dc.subject.por.fl_str_mv |
Black holes Scalarization Higgs–Chern–Simons gravity |
topic |
Black holes Scalarization Higgs–Chern–Simons gravity |
description |
In the presence of appropriate non-minimal couplings between a scalar field and the curvature squared Gauss–Bonnet (GB) term, compact objects such as neutron stars and black holes (BHs) can spontaneously scalarize, becoming a preferred vacuum. Such strong gravity phase transitions have attracted considerable attention recently. The non-minimal coupling functions that allow this mechanism are, however, always postulated ad hoc. Here, we point out that families of such functions naturally emerge in the context of Higgs–Chern–Simons gravity models, which are found as dimensionally descents of higher dimensional, purely topological, Chern–Pontryagin non-Abelian densities. As a proof of concept, we study spherically symmetric scalarized BH solutions in a particular Einstein-GB-scalar field model, whose coupling is obtained from this construction, pointing out novel features and caveats thereof. The possibility of vectorization is also discussed, since this construction also originates vector fields non-minimally coupled to the GB invariant. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-07-08T16:07:33Z 2021-04-02T00:00:00Z 2021-04-02 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/31539 |
url |
http://hdl.handle.net/10773/31539 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.3390/sym13040590 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137689183715328 |