Optimization of flow distribution in flat plate solar thermal collectors with riser and header arrangements

Detalhes bibliográficos
Autor(a) principal: Facão, Jorge
Data de Publicação: 2015
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.9/2870
Resumo: The thermal performance of flat-plate solar collectors with riser and header arrangements is strongly influenced by the flow distribution through the absorber tubes. A more uniform flow distribution leads to a homogenous temperature distribution which gives higher collector efficiency. The Z distribution usually has better performance when compared to P distribution. The design of the manifold influences the observed flow distribution. To optimize the manifold design, a correlation model was developed, based on correlations for minor pressure losses. Furthermore, the flow in this optimized geometry was simulated in 3D using the computational fluid dynamics (CFD) software code in order to confirm the results of the correlation based model. A new experimental low-intrusive technique was used to measure the flow distribution in an existing solar collector, validating the simulation results. The flow inside the absorber tubes is laminar; the major pressure loss inside riser tubes was measured using a high accuracy differential pressure transmitter, which then permits the indirect estimation of the mean velocity inside the tubes. It was the first time that this experimental methodology has been applied to analyse the flow distribution in solar collectors. The influence of the total water flow rate was analysed. For a good flow distribution it was concluded that the outlet header manifold should have a higher diameter compared to the inlet header diameter. Usually commercialised solar collectors have the headers with same diameter.
id RCAP_d3ea8f4e0867f85b8ecc06119da899b1
oai_identifier_str oai:repositorio.lneg.pt:10400.9/2870
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Optimization of flow distribution in flat plate solar thermal collectors with riser and header arrangementsSolar thermal collectorsFlow distribution Thermal performanceThe thermal performance of flat-plate solar collectors with riser and header arrangements is strongly influenced by the flow distribution through the absorber tubes. A more uniform flow distribution leads to a homogenous temperature distribution which gives higher collector efficiency. The Z distribution usually has better performance when compared to P distribution. The design of the manifold influences the observed flow distribution. To optimize the manifold design, a correlation model was developed, based on correlations for minor pressure losses. Furthermore, the flow in this optimized geometry was simulated in 3D using the computational fluid dynamics (CFD) software code in order to confirm the results of the correlation based model. A new experimental low-intrusive technique was used to measure the flow distribution in an existing solar collector, validating the simulation results. The flow inside the absorber tubes is laminar; the major pressure loss inside riser tubes was measured using a high accuracy differential pressure transmitter, which then permits the indirect estimation of the mean velocity inside the tubes. It was the first time that this experimental methodology has been applied to analyse the flow distribution in solar collectors. The influence of the total water flow rate was analysed. For a good flow distribution it was concluded that the outlet header manifold should have a higher diameter compared to the inlet header diameter. Usually commercialised solar collectors have the headers with same diameter.ElsevierRepositório do LNEGFacão, Jorge2016-03-02T12:35:04Z2015-01-01T00:00:00Z2015-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.9/2870engFacão, J. - Optimization of flow distribution in flat plate solar thermal collectors with riser and header arrangements. In: Solar Energy, 2015, Vol. 120, p. 104-1120038-092X10.1016/j.solener.2015.07.034info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-09-06T12:28:06Zoai:repositorio.lneg.pt:10400.9/2870Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T15:35:54.761749Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Optimization of flow distribution in flat plate solar thermal collectors with riser and header arrangements
title Optimization of flow distribution in flat plate solar thermal collectors with riser and header arrangements
spellingShingle Optimization of flow distribution in flat plate solar thermal collectors with riser and header arrangements
Facão, Jorge
Solar thermal collectors
Flow distribution 
Thermal performance
title_short Optimization of flow distribution in flat plate solar thermal collectors with riser and header arrangements
title_full Optimization of flow distribution in flat plate solar thermal collectors with riser and header arrangements
title_fullStr Optimization of flow distribution in flat plate solar thermal collectors with riser and header arrangements
title_full_unstemmed Optimization of flow distribution in flat plate solar thermal collectors with riser and header arrangements
title_sort Optimization of flow distribution in flat plate solar thermal collectors with riser and header arrangements
author Facão, Jorge
author_facet Facão, Jorge
author_role author
dc.contributor.none.fl_str_mv Repositório do LNEG
dc.contributor.author.fl_str_mv Facão, Jorge
dc.subject.por.fl_str_mv Solar thermal collectors
Flow distribution 
Thermal performance
topic Solar thermal collectors
Flow distribution 
Thermal performance
description The thermal performance of flat-plate solar collectors with riser and header arrangements is strongly influenced by the flow distribution through the absorber tubes. A more uniform flow distribution leads to a homogenous temperature distribution which gives higher collector efficiency. The Z distribution usually has better performance when compared to P distribution. The design of the manifold influences the observed flow distribution. To optimize the manifold design, a correlation model was developed, based on correlations for minor pressure losses. Furthermore, the flow in this optimized geometry was simulated in 3D using the computational fluid dynamics (CFD) software code in order to confirm the results of the correlation based model. A new experimental low-intrusive technique was used to measure the flow distribution in an existing solar collector, validating the simulation results. The flow inside the absorber tubes is laminar; the major pressure loss inside riser tubes was measured using a high accuracy differential pressure transmitter, which then permits the indirect estimation of the mean velocity inside the tubes. It was the first time that this experimental methodology has been applied to analyse the flow distribution in solar collectors. The influence of the total water flow rate was analysed. For a good flow distribution it was concluded that the outlet header manifold should have a higher diameter compared to the inlet header diameter. Usually commercialised solar collectors have the headers with same diameter.
publishDate 2015
dc.date.none.fl_str_mv 2015-01-01T00:00:00Z
2015-01-01T00:00:00Z
2016-03-02T12:35:04Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.9/2870
url http://hdl.handle.net/10400.9/2870
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Facão, J. - Optimization of flow distribution in flat plate solar thermal collectors with riser and header arrangements. In: Solar Energy, 2015, Vol. 120, p. 104-112
0038-092X
10.1016/j.solener.2015.07.034
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1817552002885877760