Customer Segmentation: An application to dental medicine patients
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/149947 |
Resumo: | Internship Report presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data Science |
id |
RCAP_d42c8bb2fad0c55719d5a771f4edcc83 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/149947 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Customer Segmentation: An application to dental medicine patientsClusteringCustomer SegmentationRFMK-MeansSelf-organizing mapsInternship Report presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data ScienceCustomer segmentation allows to divide a company’s customers into multiple market segments, enabling the development of customized marketing actions based on each segment’s characteristics. This work describes the application of a customer segmentation approach to the patients of a Portuguese dental company. The approach taken to select the feature subset for the final model was mostly based on the LRFM (length, recency, frequency, and monetary) model, and the monetary variable was split into multiple variables according to the treatment category where the amount was spent. K-Means and Self-organizing maps were used to cluster the company’s patients using these variables, and the results returned by both algorithms are compared. The final solution was obtained with K-Means, and 7 clusters of patients were identified. An overview of the 7 clusters is provided, and possible marketing actions are suggested based on their main characteristics. The results allowed the company to understand how its turnover was distributed across segments, and to develop an initiative to contact the patients belonging to a segment where most of them did not have an appointment in one of the company’s clinics for a long time.Pinheiro, Flávio Luís PortasRUNGonçalves, Tiago Nobre Caldeira2023-03-03T11:39:17Z2023-01-262023-01-26T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/149947TID:203240669enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:31:50Zoai:run.unl.pt:10362/149947Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:53:54.914386Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Customer Segmentation: An application to dental medicine patients |
title |
Customer Segmentation: An application to dental medicine patients |
spellingShingle |
Customer Segmentation: An application to dental medicine patients Gonçalves, Tiago Nobre Caldeira Clustering Customer Segmentation RFM K-Means Self-organizing maps |
title_short |
Customer Segmentation: An application to dental medicine patients |
title_full |
Customer Segmentation: An application to dental medicine patients |
title_fullStr |
Customer Segmentation: An application to dental medicine patients |
title_full_unstemmed |
Customer Segmentation: An application to dental medicine patients |
title_sort |
Customer Segmentation: An application to dental medicine patients |
author |
Gonçalves, Tiago Nobre Caldeira |
author_facet |
Gonçalves, Tiago Nobre Caldeira |
author_role |
author |
dc.contributor.none.fl_str_mv |
Pinheiro, Flávio Luís Portas RUN |
dc.contributor.author.fl_str_mv |
Gonçalves, Tiago Nobre Caldeira |
dc.subject.por.fl_str_mv |
Clustering Customer Segmentation RFM K-Means Self-organizing maps |
topic |
Clustering Customer Segmentation RFM K-Means Self-organizing maps |
description |
Internship Report presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data Science |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-03-03T11:39:17Z 2023-01-26 2023-01-26T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/149947 TID:203240669 |
url |
http://hdl.handle.net/10362/149947 |
identifier_str_mv |
TID:203240669 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138128990044160 |