Quantum communication systems based on polarization encoded Qubits
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/34979 |
Resumo: | We are now facing a second quantum revolution, that started in the early 21st century, bringing significant technological advances to science, industry and society based on advances on quantum information. The eminent emergence of a quantum computer has boosted concerns about the security of current classical public-key cryptography systems. One important topic in the research field of quantum information is the way we distribute keys in order to allow secure communication between distant parties. QKD systems are already in a pre-commercial stage attracting companies and government heavy investment in researching for quantum information technologies. However, there still are a lot of research to be done in this field, specially regarding high rate transmission, achievable distance reach, and obviously the practical implementation cost. In this thesis, we start by experimentally implement a polarization-encoded discrete variables based quantum communication system which allowed us to identify issues that must be solved in order to make it suitable for QKD protocols practical implementation. In this way, we propose a non-intrusive heuristic method to automatically compensate polarization random drift in standard opticalfiber channels due birefringence effects, and that induces errors during qubit transmission. The compensation of polarization drifts induced by the quantum channel is fundamental to enable the deployment of polarization encoded single-photons transmission over the current optical fiber networks. Furthermore, in this thesis we also propose and validated though numerical simulations a novel polarization-based DV-QKD system that combines the use of phase-modulators for state of polarization (SOP) generation and basis switching with a polarization diversity coherent detection scheme. This enables a full implementation of DV-QKD systems using only classical hardware, which low the cost of QKD systems based on polarization encoded single-photons at the same time that increases the transmission rate. Our results open the door to very high baud-rate polarization qubits transmission in access and metro networks. We report continuous qubit transmission, even in environments subjected to high polarization drift, without consuming extra-bandwidth with a maximum Quantum Bit Error Rate (QBER) of 2%. |
id |
RCAP_d434ffdcd381c9fd9d31ebc1a4c33048 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/34979 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Quantum communication systems based on polarization encoded QubitsQuantum communicationsQuantum cryptographyQuantum key distributionDiscrete-variablesPolarization encodingPolarization driftQuantum algorithmsPolarization diversityWe are now facing a second quantum revolution, that started in the early 21st century, bringing significant technological advances to science, industry and society based on advances on quantum information. The eminent emergence of a quantum computer has boosted concerns about the security of current classical public-key cryptography systems. One important topic in the research field of quantum information is the way we distribute keys in order to allow secure communication between distant parties. QKD systems are already in a pre-commercial stage attracting companies and government heavy investment in researching for quantum information technologies. However, there still are a lot of research to be done in this field, specially regarding high rate transmission, achievable distance reach, and obviously the practical implementation cost. In this thesis, we start by experimentally implement a polarization-encoded discrete variables based quantum communication system which allowed us to identify issues that must be solved in order to make it suitable for QKD protocols practical implementation. In this way, we propose a non-intrusive heuristic method to automatically compensate polarization random drift in standard opticalfiber channels due birefringence effects, and that induces errors during qubit transmission. The compensation of polarization drifts induced by the quantum channel is fundamental to enable the deployment of polarization encoded single-photons transmission over the current optical fiber networks. Furthermore, in this thesis we also propose and validated though numerical simulations a novel polarization-based DV-QKD system that combines the use of phase-modulators for state of polarization (SOP) generation and basis switching with a polarization diversity coherent detection scheme. This enables a full implementation of DV-QKD systems using only classical hardware, which low the cost of QKD systems based on polarization encoded single-photons at the same time that increases the transmission rate. Our results open the door to very high baud-rate polarization qubits transmission in access and metro networks. We report continuous qubit transmission, even in environments subjected to high polarization drift, without consuming extra-bandwidth with a maximum Quantum Bit Error Rate (QBER) of 2%.Estamos perante a segunda revolução quântica, a qual começou no início do século 21 trazendo avanços significativos na ciência, na indústria e na sociedade baseados nos avanços da teoria da informação. A emergência eminente de um computador quântico tem despoletado preocupações relativamente à segurança dos atuais sistemas de criptografia pública clássica. Um tópico importante no campo da investigação de informação quântica diz respeito à forma de distribuição de chaves criptográficas de forma a garantir comunicações seguras entre partes distantes. Os sistemas de distribuição de chaves quânticas estão já num estágio comercial, o que tem atraído investimento de empresas e governos para a investigação nas tecnologias de informação quântica. Contudo, existe ainda muita investigação a ser feita neste campo, especialmente no que diz respeito a elevadas taxas de transmissão, distância atingida, e obviamente o custo duma implantação prática. Neste trabalho de doutoramento, começamos por implementar experimentalmente um sistema de comunicações quânticas que usa variáveis discretas com codificação na polarização, o que nos permite identificar os problemas a serem resolvidos de forma a tornar possível a implementação prática de protocolos de distribuição de chave quântica. Desta forma, propomos um método heurístico não intrusivo para compensar automaticamente a deriva aleatória de polarização em canais padrão de fibra ótica devido a efeitos de birrefringência, e que induzem erros durante a transmissão de Qubits. A compensação da deriva de polarização induzida pelo canal quântico é fundamental para permitir a implementação prática generalizada da transmissão de fotões únicos com codificação na polarização nas redes atuais de fibra ótica. Neste trabalho de doutoramento propomos ainda e validamos através de simulações numéricas um novo sistema de DV-QKD baseado na polarização que combina o uso de moduladores de fase para gerar quatro estados de polarização e mudança de base com um esquema de deteção coerente. Este sistema permite a implementação de sistemas de DV-QKD usando unicamente equipamento clássico, o que garante um custo reduzido da implementação de sistemas Quantum Key Distribution (QKD) baseados em fotões únicos codificados na polarização e ao mesmo tempo um aumento da taxa de transmissão. Os nossos resultados abrem a porta a sistemas de transmissão de qubits a débitos elevados aquando da sua implementação nas redes instaladas de fibra ótica. Reportamos transmissões continuas de qubits mesmo em ambientes sujeitos a elevada deriva da polarização, sem a necessidade de consumir largura de banda extra com uma taxa de erro quântico máxima de 2%.2022-10-25T10:37:44Z2022-05-11T00:00:00Z2022-05-11doctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10773/34979engRamos, Mariana Ferreirainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-06T04:40:06Zoai:ria.ua.pt:10773/34979Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-06T04:40:06Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Quantum communication systems based on polarization encoded Qubits |
title |
Quantum communication systems based on polarization encoded Qubits |
spellingShingle |
Quantum communication systems based on polarization encoded Qubits Ramos, Mariana Ferreira Quantum communications Quantum cryptography Quantum key distribution Discrete-variables Polarization encoding Polarization drift Quantum algorithms Polarization diversity |
title_short |
Quantum communication systems based on polarization encoded Qubits |
title_full |
Quantum communication systems based on polarization encoded Qubits |
title_fullStr |
Quantum communication systems based on polarization encoded Qubits |
title_full_unstemmed |
Quantum communication systems based on polarization encoded Qubits |
title_sort |
Quantum communication systems based on polarization encoded Qubits |
author |
Ramos, Mariana Ferreira |
author_facet |
Ramos, Mariana Ferreira |
author_role |
author |
dc.contributor.author.fl_str_mv |
Ramos, Mariana Ferreira |
dc.subject.por.fl_str_mv |
Quantum communications Quantum cryptography Quantum key distribution Discrete-variables Polarization encoding Polarization drift Quantum algorithms Polarization diversity |
topic |
Quantum communications Quantum cryptography Quantum key distribution Discrete-variables Polarization encoding Polarization drift Quantum algorithms Polarization diversity |
description |
We are now facing a second quantum revolution, that started in the early 21st century, bringing significant technological advances to science, industry and society based on advances on quantum information. The eminent emergence of a quantum computer has boosted concerns about the security of current classical public-key cryptography systems. One important topic in the research field of quantum information is the way we distribute keys in order to allow secure communication between distant parties. QKD systems are already in a pre-commercial stage attracting companies and government heavy investment in researching for quantum information technologies. However, there still are a lot of research to be done in this field, specially regarding high rate transmission, achievable distance reach, and obviously the practical implementation cost. In this thesis, we start by experimentally implement a polarization-encoded discrete variables based quantum communication system which allowed us to identify issues that must be solved in order to make it suitable for QKD protocols practical implementation. In this way, we propose a non-intrusive heuristic method to automatically compensate polarization random drift in standard opticalfiber channels due birefringence effects, and that induces errors during qubit transmission. The compensation of polarization drifts induced by the quantum channel is fundamental to enable the deployment of polarization encoded single-photons transmission over the current optical fiber networks. Furthermore, in this thesis we also propose and validated though numerical simulations a novel polarization-based DV-QKD system that combines the use of phase-modulators for state of polarization (SOP) generation and basis switching with a polarization diversity coherent detection scheme. This enables a full implementation of DV-QKD systems using only classical hardware, which low the cost of QKD systems based on polarization encoded single-photons at the same time that increases the transmission rate. Our results open the door to very high baud-rate polarization qubits transmission in access and metro networks. We report continuous qubit transmission, even in environments subjected to high polarization drift, without consuming extra-bandwidth with a maximum Quantum Bit Error Rate (QBER) of 2%. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-10-25T10:37:44Z 2022-05-11T00:00:00Z 2022-05-11 |
dc.type.driver.fl_str_mv |
doctoral thesis |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/34979 |
url |
http://hdl.handle.net/10773/34979 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817543825787191296 |