Quantum communication systems based on polarization encoded Qubits

Detalhes bibliográficos
Autor(a) principal: Ramos, Mariana Ferreira
Data de Publicação: 2022
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/34979
Resumo: We are now facing a second quantum revolution, that started in the early 21st century, bringing significant technological advances to science, industry and society based on advances on quantum information. The eminent emergence of a quantum computer has boosted concerns about the security of current classical public-key cryptography systems. One important topic in the research field of quantum information is the way we distribute keys in order to allow secure communication between distant parties. QKD systems are already in a pre-commercial stage attracting companies and government heavy investment in researching for quantum information technologies. However, there still are a lot of research to be done in this field, specially regarding high rate transmission, achievable distance reach, and obviously the practical implementation cost. In this thesis, we start by experimentally implement a polarization-encoded discrete variables based quantum communication system which allowed us to identify issues that must be solved in order to make it suitable for QKD protocols practical implementation. In this way, we propose a non-intrusive heuristic method to automatically compensate polarization random drift in standard opticalfiber channels due birefringence effects, and that induces errors during qubit transmission. The compensation of polarization drifts induced by the quantum channel is fundamental to enable the deployment of polarization encoded single-photons transmission over the current optical fiber networks. Furthermore, in this thesis we also propose and validated though numerical simulations a novel polarization-based DV-QKD system that combines the use of phase-modulators for state of polarization (SOP) generation and basis switching with a polarization diversity coherent detection scheme. This enables a full implementation of DV-QKD systems using only classical hardware, which low the cost of QKD systems based on polarization encoded single-photons at the same time that increases the transmission rate. Our results open the door to very high baud-rate polarization qubits transmission in access and metro networks. We report continuous qubit transmission, even in environments subjected to high polarization drift, without consuming extra-bandwidth with a maximum Quantum Bit Error Rate (QBER) of 2%.
id RCAP_d434ffdcd381c9fd9d31ebc1a4c33048
oai_identifier_str oai:ria.ua.pt:10773/34979
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Quantum communication systems based on polarization encoded QubitsQuantum communicationsQuantum cryptographyQuantum key distributionDiscrete-variablesPolarization encodingPolarization driftQuantum algorithmsPolarization diversityWe are now facing a second quantum revolution, that started in the early 21st century, bringing significant technological advances to science, industry and society based on advances on quantum information. The eminent emergence of a quantum computer has boosted concerns about the security of current classical public-key cryptography systems. One important topic in the research field of quantum information is the way we distribute keys in order to allow secure communication between distant parties. QKD systems are already in a pre-commercial stage attracting companies and government heavy investment in researching for quantum information technologies. However, there still are a lot of research to be done in this field, specially regarding high rate transmission, achievable distance reach, and obviously the practical implementation cost. In this thesis, we start by experimentally implement a polarization-encoded discrete variables based quantum communication system which allowed us to identify issues that must be solved in order to make it suitable for QKD protocols practical implementation. In this way, we propose a non-intrusive heuristic method to automatically compensate polarization random drift in standard opticalfiber channels due birefringence effects, and that induces errors during qubit transmission. The compensation of polarization drifts induced by the quantum channel is fundamental to enable the deployment of polarization encoded single-photons transmission over the current optical fiber networks. Furthermore, in this thesis we also propose and validated though numerical simulations a novel polarization-based DV-QKD system that combines the use of phase-modulators for state of polarization (SOP) generation and basis switching with a polarization diversity coherent detection scheme. This enables a full implementation of DV-QKD systems using only classical hardware, which low the cost of QKD systems based on polarization encoded single-photons at the same time that increases the transmission rate. Our results open the door to very high baud-rate polarization qubits transmission in access and metro networks. We report continuous qubit transmission, even in environments subjected to high polarization drift, without consuming extra-bandwidth with a maximum Quantum Bit Error Rate (QBER) of 2%.Estamos perante a segunda revolução quântica, a qual começou no início do século 21 trazendo avanços significativos na ciência, na indústria e na sociedade baseados nos avanços da teoria da informação. A emergência eminente de um computador quântico tem despoletado preocupações relativamente à segurança dos atuais sistemas de criptografia pública clássica. Um tópico importante no campo da investigação de informação quântica diz respeito à forma de distribuição de chaves criptográficas de forma a garantir comunicações seguras entre partes distantes. Os sistemas de distribuição de chaves quânticas estão já num estágio comercial, o que tem atraído investimento de empresas e governos para a investigação nas tecnologias de informação quântica. Contudo, existe ainda muita investigação a ser feita neste campo, especialmente no que diz respeito a elevadas taxas de transmissão, distância atingida, e obviamente o custo duma implantação prática. Neste trabalho de doutoramento, começamos por implementar experimentalmente um sistema de comunicações quânticas que usa variáveis discretas com codificação na polarização, o que nos permite identificar os problemas a serem resolvidos de forma a tornar possível a implementação prática de protocolos de distribuição de chave quântica. Desta forma, propomos um método heurístico não intrusivo para compensar automaticamente a deriva aleatória de polarização em canais padrão de fibra ótica devido a efeitos de birrefringência, e que induzem erros durante a transmissão de Qubits. A compensação da deriva de polarização induzida pelo canal quântico é fundamental para permitir a implementação prática generalizada da transmissão de fotões únicos com codificação na polarização nas redes atuais de fibra ótica. Neste trabalho de doutoramento propomos ainda e validamos através de simulações numéricas um novo sistema de DV-QKD baseado na polarização que combina o uso de moduladores de fase para gerar quatro estados de polarização e mudança de base com um esquema de deteção coerente. Este sistema permite a implementação de sistemas de DV-QKD usando unicamente equipamento clássico, o que garante um custo reduzido da implementação de sistemas Quantum Key Distribution (QKD) baseados em fotões únicos codificados na polarização e ao mesmo tempo um aumento da taxa de transmissão. Os nossos resultados abrem a porta a sistemas de transmissão de qubits a débitos elevados aquando da sua implementação nas redes instaladas de fibra ótica. Reportamos transmissões continuas de qubits mesmo em ambientes sujeitos a elevada deriva da polarização, sem a necessidade de consumir largura de banda extra com uma taxa de erro quântico máxima de 2%.2022-10-25T10:37:44Z2022-05-11T00:00:00Z2022-05-11doctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10773/34979engRamos, Mariana Ferreirainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-06T04:40:06Zoai:ria.ua.pt:10773/34979Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-06T04:40:06Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Quantum communication systems based on polarization encoded Qubits
title Quantum communication systems based on polarization encoded Qubits
spellingShingle Quantum communication systems based on polarization encoded Qubits
Ramos, Mariana Ferreira
Quantum communications
Quantum cryptography
Quantum key distribution
Discrete-variables
Polarization encoding
Polarization drift
Quantum algorithms
Polarization diversity
title_short Quantum communication systems based on polarization encoded Qubits
title_full Quantum communication systems based on polarization encoded Qubits
title_fullStr Quantum communication systems based on polarization encoded Qubits
title_full_unstemmed Quantum communication systems based on polarization encoded Qubits
title_sort Quantum communication systems based on polarization encoded Qubits
author Ramos, Mariana Ferreira
author_facet Ramos, Mariana Ferreira
author_role author
dc.contributor.author.fl_str_mv Ramos, Mariana Ferreira
dc.subject.por.fl_str_mv Quantum communications
Quantum cryptography
Quantum key distribution
Discrete-variables
Polarization encoding
Polarization drift
Quantum algorithms
Polarization diversity
topic Quantum communications
Quantum cryptography
Quantum key distribution
Discrete-variables
Polarization encoding
Polarization drift
Quantum algorithms
Polarization diversity
description We are now facing a second quantum revolution, that started in the early 21st century, bringing significant technological advances to science, industry and society based on advances on quantum information. The eminent emergence of a quantum computer has boosted concerns about the security of current classical public-key cryptography systems. One important topic in the research field of quantum information is the way we distribute keys in order to allow secure communication between distant parties. QKD systems are already in a pre-commercial stage attracting companies and government heavy investment in researching for quantum information technologies. However, there still are a lot of research to be done in this field, specially regarding high rate transmission, achievable distance reach, and obviously the practical implementation cost. In this thesis, we start by experimentally implement a polarization-encoded discrete variables based quantum communication system which allowed us to identify issues that must be solved in order to make it suitable for QKD protocols practical implementation. In this way, we propose a non-intrusive heuristic method to automatically compensate polarization random drift in standard opticalfiber channels due birefringence effects, and that induces errors during qubit transmission. The compensation of polarization drifts induced by the quantum channel is fundamental to enable the deployment of polarization encoded single-photons transmission over the current optical fiber networks. Furthermore, in this thesis we also propose and validated though numerical simulations a novel polarization-based DV-QKD system that combines the use of phase-modulators for state of polarization (SOP) generation and basis switching with a polarization diversity coherent detection scheme. This enables a full implementation of DV-QKD systems using only classical hardware, which low the cost of QKD systems based on polarization encoded single-photons at the same time that increases the transmission rate. Our results open the door to very high baud-rate polarization qubits transmission in access and metro networks. We report continuous qubit transmission, even in environments subjected to high polarization drift, without consuming extra-bandwidth with a maximum Quantum Bit Error Rate (QBER) of 2%.
publishDate 2022
dc.date.none.fl_str_mv 2022-10-25T10:37:44Z
2022-05-11T00:00:00Z
2022-05-11
dc.type.driver.fl_str_mv doctoral thesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/34979
url http://hdl.handle.net/10773/34979
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817543825787191296