How to Predict the Innovation to SMEs? Applying the Data Mining Process to the Spinner Innovation Model

Detalhes bibliográficos
Autor(a) principal: Figueiredo, Ronnie
Data de Publicação: 2023
Outros Autores: Magalhães, Carla, Huber, Claudia Maria
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.8/9075
Resumo: Funding: This paper is financed by National Funding awarded by the FCT—Portuguese Foundation for Science and Technology to the project «UIDB/04928/2020» and NECE-UBI, R&D unit funded by the FCT —Portuguese Foundation for the Development of Science and Technology, Ministry of Education and Science, University of Beira Interior, Management and Economics Department, Estrada do Sineiro, 6200-209 Covilhã, Portugal.
id RCAP_d4584a1c388a8d62a4ebc76e4a479ea3
oai_identifier_str oai:iconline.ipleiria.pt:10400.8/9075
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling How to Predict the Innovation to SMEs? Applying the Data Mining Process to the Spinner Innovation ModelSpinner innovationData miningPredictiveModelOpen innovationFunding: This paper is financed by National Funding awarded by the FCT—Portuguese Foundation for Science and Technology to the project «UIDB/04928/2020» and NECE-UBI, R&D unit funded by the FCT —Portuguese Foundation for the Development of Science and Technology, Ministry of Education and Science, University of Beira Interior, Management and Economics Department, Estrada do Sineiro, 6200-209 Covilhã, Portugal.Despite the importance of small and medium-sized enterprises (SMEs) for the growth and development of companies, the high failure rate of these companies persists, and this correspondingly demands the attention of managers. Thus, to boost the company success rate, we may deploy certain approaches, for example predictive models, specifically for the SME innovation. This study aims to examine the variables that positively shape and contribute towards innovation of SMEs. Based on the Spinner innovation model, we explore how to predict the innovation of SMEs by applying the variables, namely knowledge creation, knowledge transfer, public knowledge management, private knowledge management and innovation. This study applied the data mining technique according to the cross industry standard process for data mining (CRISP-DM) method while the Statistical Package for the Social Sciences (SPSS_Version28) served to analyze the data collected from 208 SME employees in Oporto, Portugal. The results demonstrate how the Spinner innovation model positively influences the contributions of the SMEs. This SME-dedicated model fosters the creation of knowledge between internal and external interactions and increases the capacity to predict the SME innovation by 56%.MDPIIC-OnlineFigueiredo, RonnieMagalhães, CarlaHuber, Claudia Maria2023-12-12T09:56:31Z2023-01-312023-01-31T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.8/9075engFigueiredo, R., Magalhães, C., & Huber, C. (2023). How to Predict the Innovation to SMEs? Applying the Data Mining Process to the Spinner Innovation Model. Social Sciences, 12(2), 75. https://doi.org/10.3390/socsci12020075https://doi.org/10.3390/socsci120200752076-0760info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-17T15:58:50Zoai:iconline.ipleiria.pt:10400.8/9075Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:51:40.796338Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv How to Predict the Innovation to SMEs? Applying the Data Mining Process to the Spinner Innovation Model
title How to Predict the Innovation to SMEs? Applying the Data Mining Process to the Spinner Innovation Model
spellingShingle How to Predict the Innovation to SMEs? Applying the Data Mining Process to the Spinner Innovation Model
Figueiredo, Ronnie
Spinner innovation
Data mining
Predictive
Model
Open innovation
title_short How to Predict the Innovation to SMEs? Applying the Data Mining Process to the Spinner Innovation Model
title_full How to Predict the Innovation to SMEs? Applying the Data Mining Process to the Spinner Innovation Model
title_fullStr How to Predict the Innovation to SMEs? Applying the Data Mining Process to the Spinner Innovation Model
title_full_unstemmed How to Predict the Innovation to SMEs? Applying the Data Mining Process to the Spinner Innovation Model
title_sort How to Predict the Innovation to SMEs? Applying the Data Mining Process to the Spinner Innovation Model
author Figueiredo, Ronnie
author_facet Figueiredo, Ronnie
Magalhães, Carla
Huber, Claudia Maria
author_role author
author2 Magalhães, Carla
Huber, Claudia Maria
author2_role author
author
dc.contributor.none.fl_str_mv IC-Online
dc.contributor.author.fl_str_mv Figueiredo, Ronnie
Magalhães, Carla
Huber, Claudia Maria
dc.subject.por.fl_str_mv Spinner innovation
Data mining
Predictive
Model
Open innovation
topic Spinner innovation
Data mining
Predictive
Model
Open innovation
description Funding: This paper is financed by National Funding awarded by the FCT—Portuguese Foundation for Science and Technology to the project «UIDB/04928/2020» and NECE-UBI, R&D unit funded by the FCT —Portuguese Foundation for the Development of Science and Technology, Ministry of Education and Science, University of Beira Interior, Management and Economics Department, Estrada do Sineiro, 6200-209 Covilhã, Portugal.
publishDate 2023
dc.date.none.fl_str_mv 2023-12-12T09:56:31Z
2023-01-31
2023-01-31T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.8/9075
url http://hdl.handle.net/10400.8/9075
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Figueiredo, R., Magalhães, C., & Huber, C. (2023). How to Predict the Innovation to SMEs? Applying the Data Mining Process to the Spinner Innovation Model. Social Sciences, 12(2), 75. https://doi.org/10.3390/socsci12020075
https://doi.org/10.3390/socsci12020075
2076-0760
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137008049717248