Extreme Value Laws for Dynamical Systems with Countable Extremal Sets
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/10216/111035 |
Resumo: | We consider stationary stochastic processes arising from dynamical systems by evaluating a given observable along the orbits of the system. We focus on the extremal behaviour of the process, which is related to the entrance in certain regions of the phase space, which correspond to neighbourhoods of the maximal set (Formula presented.), i.e.,the set of points where the observable is maximised. The main novelty here is the fact that we consider that the set (Formula presented.) may have a countable number of points, which are associated by belonging to the orbit of a certain point, and may have accumulation points. In order to prove the existence of distributional limits and study the intensity of clustering, given by the Extremal Index, we generalise the conditions previously introduced in Freitas (Adv Math 231(5): 26262665, 2012, Stoch Process Appl 125(4): 16531687, 2015). (c) 2017 Springer Science+Business Media New York |
id |
RCAP_d493f76e2ba1b50c63ddfd209d11d58e |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/111035 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Extreme Value Laws for Dynamical Systems with Countable Extremal SetsWe consider stationary stochastic processes arising from dynamical systems by evaluating a given observable along the orbits of the system. We focus on the extremal behaviour of the process, which is related to the entrance in certain regions of the phase space, which correspond to neighbourhoods of the maximal set (Formula presented.), i.e.,the set of points where the observable is maximised. The main novelty here is the fact that we consider that the set (Formula presented.) may have a countable number of points, which are associated by belonging to the orbit of a certain point, and may have accumulation points. In order to prove the existence of distributional limits and study the intensity of clustering, given by the Extremal Index, we generalise the conditions previously introduced in Freitas (Adv Math 231(5): 26262665, 2012, Stoch Process Appl 125(4): 16531687, 2015). (c) 2017 Springer Science+Business Media New York20172017-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/111035eng0022-471510.1007/s10955-017-1767-1Azevedo, DAna Cristina Moreira FreitasJorge Milhazes FreitasRodrigues, FBinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T15:04:44Zoai:repositorio-aberto.up.pt:10216/111035Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:15:08.435193Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Extreme Value Laws for Dynamical Systems with Countable Extremal Sets |
title |
Extreme Value Laws for Dynamical Systems with Countable Extremal Sets |
spellingShingle |
Extreme Value Laws for Dynamical Systems with Countable Extremal Sets Azevedo, D |
title_short |
Extreme Value Laws for Dynamical Systems with Countable Extremal Sets |
title_full |
Extreme Value Laws for Dynamical Systems with Countable Extremal Sets |
title_fullStr |
Extreme Value Laws for Dynamical Systems with Countable Extremal Sets |
title_full_unstemmed |
Extreme Value Laws for Dynamical Systems with Countable Extremal Sets |
title_sort |
Extreme Value Laws for Dynamical Systems with Countable Extremal Sets |
author |
Azevedo, D |
author_facet |
Azevedo, D Ana Cristina Moreira Freitas Jorge Milhazes Freitas Rodrigues, FB |
author_role |
author |
author2 |
Ana Cristina Moreira Freitas Jorge Milhazes Freitas Rodrigues, FB |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Azevedo, D Ana Cristina Moreira Freitas Jorge Milhazes Freitas Rodrigues, FB |
description |
We consider stationary stochastic processes arising from dynamical systems by evaluating a given observable along the orbits of the system. We focus on the extremal behaviour of the process, which is related to the entrance in certain regions of the phase space, which correspond to neighbourhoods of the maximal set (Formula presented.), i.e.,the set of points where the observable is maximised. The main novelty here is the fact that we consider that the set (Formula presented.) may have a countable number of points, which are associated by belonging to the orbit of a certain point, and may have accumulation points. In order to prove the existence of distributional limits and study the intensity of clustering, given by the Extremal Index, we generalise the conditions previously introduced in Freitas (Adv Math 231(5): 26262665, 2012, Stoch Process Appl 125(4): 16531687, 2015). (c) 2017 Springer Science+Business Media New York |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 2017-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/111035 |
url |
https://hdl.handle.net/10216/111035 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0022-4715 10.1007/s10955-017-1767-1 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136072136916992 |