Extreme Value Laws for Dynamical Systems with Countable Extremal Sets

Detalhes bibliográficos
Autor(a) principal: Azevedo, D
Data de Publicação: 2017
Outros Autores: Ana Cristina Moreira Freitas, Jorge Milhazes Freitas, Rodrigues, FB
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/111035
Resumo: We consider stationary stochastic processes arising from dynamical systems by evaluating a given observable along the orbits of the system. We focus on the extremal behaviour of the process, which is related to the entrance in certain regions of the phase space, which correspond to neighbourhoods of the maximal set (Formula presented.), i.e.,the set of points where the observable is maximised. The main novelty here is the fact that we consider that the set (Formula presented.) may have a countable number of points, which are associated by belonging to the orbit of a certain point, and may have accumulation points. In order to prove the existence of distributional limits and study the intensity of clustering, given by the Extremal Index, we generalise the conditions previously introduced in Freitas (Adv Math 231(5): 26262665, 2012, Stoch Process Appl 125(4): 16531687, 2015). (c) 2017 Springer Science+Business Media New York
id RCAP_d493f76e2ba1b50c63ddfd209d11d58e
oai_identifier_str oai:repositorio-aberto.up.pt:10216/111035
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Extreme Value Laws for Dynamical Systems with Countable Extremal SetsWe consider stationary stochastic processes arising from dynamical systems by evaluating a given observable along the orbits of the system. We focus on the extremal behaviour of the process, which is related to the entrance in certain regions of the phase space, which correspond to neighbourhoods of the maximal set (Formula presented.), i.e.,the set of points where the observable is maximised. The main novelty here is the fact that we consider that the set (Formula presented.) may have a countable number of points, which are associated by belonging to the orbit of a certain point, and may have accumulation points. In order to prove the existence of distributional limits and study the intensity of clustering, given by the Extremal Index, we generalise the conditions previously introduced in Freitas (Adv Math 231(5): 26262665, 2012, Stoch Process Appl 125(4): 16531687, 2015). (c) 2017 Springer Science+Business Media New York20172017-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/111035eng0022-471510.1007/s10955-017-1767-1Azevedo, DAna Cristina Moreira FreitasJorge Milhazes FreitasRodrigues, FBinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T15:04:44Zoai:repositorio-aberto.up.pt:10216/111035Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:15:08.435193Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Extreme Value Laws for Dynamical Systems with Countable Extremal Sets
title Extreme Value Laws for Dynamical Systems with Countable Extremal Sets
spellingShingle Extreme Value Laws for Dynamical Systems with Countable Extremal Sets
Azevedo, D
title_short Extreme Value Laws for Dynamical Systems with Countable Extremal Sets
title_full Extreme Value Laws for Dynamical Systems with Countable Extremal Sets
title_fullStr Extreme Value Laws for Dynamical Systems with Countable Extremal Sets
title_full_unstemmed Extreme Value Laws for Dynamical Systems with Countable Extremal Sets
title_sort Extreme Value Laws for Dynamical Systems with Countable Extremal Sets
author Azevedo, D
author_facet Azevedo, D
Ana Cristina Moreira Freitas
Jorge Milhazes Freitas
Rodrigues, FB
author_role author
author2 Ana Cristina Moreira Freitas
Jorge Milhazes Freitas
Rodrigues, FB
author2_role author
author
author
dc.contributor.author.fl_str_mv Azevedo, D
Ana Cristina Moreira Freitas
Jorge Milhazes Freitas
Rodrigues, FB
description We consider stationary stochastic processes arising from dynamical systems by evaluating a given observable along the orbits of the system. We focus on the extremal behaviour of the process, which is related to the entrance in certain regions of the phase space, which correspond to neighbourhoods of the maximal set (Formula presented.), i.e.,the set of points where the observable is maximised. The main novelty here is the fact that we consider that the set (Formula presented.) may have a countable number of points, which are associated by belonging to the orbit of a certain point, and may have accumulation points. In order to prove the existence of distributional limits and study the intensity of clustering, given by the Extremal Index, we generalise the conditions previously introduced in Freitas (Adv Math 231(5): 26262665, 2012, Stoch Process Appl 125(4): 16531687, 2015). (c) 2017 Springer Science+Business Media New York
publishDate 2017
dc.date.none.fl_str_mv 2017
2017-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/111035
url https://hdl.handle.net/10216/111035
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0022-4715
10.1007/s10955-017-1767-1
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136072136916992