Existence of weak solutions for the generalized Navier-Stokes equations with damping

Detalhes bibliográficos
Autor(a) principal: de Oliveira, H. B.
Data de Publicação: 2013
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.1/11560
Resumo: In this work we consider the generalized Navier-Stokes equations with the presence of a damping term in the momentum equation. The problem studied here derives from the set of equations which govern isothermal flows of incompressible and homogeneous non-Newtonian fluids. For the generalized Navier-Stokes problem with damping, we prove the existence of weak solutions by using regularization techniques, the theory of monotone operators and compactness arguments together with the local decomposition of the pressure and the Lipschitz-truncation method. The existence result proved here holds for any and any sigma > 1, where q is the exponent of the diffusion term and sigma is the exponent which characterizes the damping term.
id RCAP_d4ccb3c99ff21848f97b647b21714394
oai_identifier_str oai:sapientia.ualg.pt:10400.1/11560
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Existence of weak solutions for the generalized Navier-Stokes equations with dampingShear-dependent viscositySteady flowsFluidsIn this work we consider the generalized Navier-Stokes equations with the presence of a damping term in the momentum equation. The problem studied here derives from the set of equations which govern isothermal flows of incompressible and homogeneous non-Newtonian fluids. For the generalized Navier-Stokes problem with damping, we prove the existence of weak solutions by using regularization techniques, the theory of monotone operators and compactness arguments together with the local decomposition of the pressure and the Lipschitz-truncation method. The existence result proved here holds for any and any sigma > 1, where q is the exponent of the diffusion term and sigma is the exponent which characterizes the damping term.MCTES, Portugal [SFRH/BSAB/1058/2010]; FCT, Portugal [PTDC/MAT/110613/2010]Springer Basel AgSapientiade Oliveira, H. B.2018-12-07T14:53:32Z2013-062013-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/11560eng1021-972210.1007/s00030-012-0180-3info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-24T10:23:23Zoai:sapientia.ualg.pt:10400.1/11560Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:03:03.092240Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Existence of weak solutions for the generalized Navier-Stokes equations with damping
title Existence of weak solutions for the generalized Navier-Stokes equations with damping
spellingShingle Existence of weak solutions for the generalized Navier-Stokes equations with damping
de Oliveira, H. B.
Shear-dependent viscosity
Steady flows
Fluids
title_short Existence of weak solutions for the generalized Navier-Stokes equations with damping
title_full Existence of weak solutions for the generalized Navier-Stokes equations with damping
title_fullStr Existence of weak solutions for the generalized Navier-Stokes equations with damping
title_full_unstemmed Existence of weak solutions for the generalized Navier-Stokes equations with damping
title_sort Existence of weak solutions for the generalized Navier-Stokes equations with damping
author de Oliveira, H. B.
author_facet de Oliveira, H. B.
author_role author
dc.contributor.none.fl_str_mv Sapientia
dc.contributor.author.fl_str_mv de Oliveira, H. B.
dc.subject.por.fl_str_mv Shear-dependent viscosity
Steady flows
Fluids
topic Shear-dependent viscosity
Steady flows
Fluids
description In this work we consider the generalized Navier-Stokes equations with the presence of a damping term in the momentum equation. The problem studied here derives from the set of equations which govern isothermal flows of incompressible and homogeneous non-Newtonian fluids. For the generalized Navier-Stokes problem with damping, we prove the existence of weak solutions by using regularization techniques, the theory of monotone operators and compactness arguments together with the local decomposition of the pressure and the Lipschitz-truncation method. The existence result proved here holds for any and any sigma > 1, where q is the exponent of the diffusion term and sigma is the exponent which characterizes the damping term.
publishDate 2013
dc.date.none.fl_str_mv 2013-06
2013-06-01T00:00:00Z
2018-12-07T14:53:32Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.1/11560
url http://hdl.handle.net/10400.1/11560
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1021-9722
10.1007/s00030-012-0180-3
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer Basel Ag
publisher.none.fl_str_mv Springer Basel Ag
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133264446750720