Galactodendritic Phthalocyanine Targets Carbohydrate- Binding Proteins Enhancing Photodynamic Therapy
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/27701 https://doi.org/10.1371/journal.pone.0095529 |
Resumo: | Photosensitizers (PSs) are of crucial importance in the effectiveness of photodynamic therapy (PDT) for cancer. Due to their high reactive oxygen species production and strong absorption in the wavelength range between 650 and 850 nm, where tissue light penetration is rather high, phthalocyanines (Pcs) have been studied as PSs of excellence. In this work, we report the evaluation of a phthalocyanine surrounded by a carbohydrate shell of sixteen galactose units distributed in a dendritic manner (PcGal16) as a new and efficient third generation PSs for PDT against two bladder cancer cell lines, HT-1376 and UMUC- 3. Here, we define the role of galacto-dendritic units in promoting the uptake of a Pc through interaction with GLUT1 and galectin-1. The photoactivation of PcGal16 induces cell death by generating oxidative stress. Although PDT with PcGal16 induces an increase on the activity of antioxidant enzymes immediately after PDT, bladder cancer cells are unable to recover from the PDT-induced damage effects for at least 72 h after treatment. PcGal16 co-localization with galectin-1 and GLUT1 and/or generation of oxidative stress after PcGal16 photoactivation induces changes in the levels of these proteins. Knockdown of galectin-1 and GLUT1, via small interfering RNA (siRNA), in bladder cancer cells decreases intracellular uptake and phototoxicity of PcGal16. The results reported herein show PcGal16 as a promising therapeutic agent for the treatment of bladder cancer, which is the fifth most common type of cancer with the highest rate of recurrence of any cancer. |
id |
RCAP_d4d2bf32d2a01109e6cc411055adbf81 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/27701 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Galactodendritic Phthalocyanine Targets Carbohydrate- Binding Proteins Enhancing Photodynamic TherapyPhotosensitizers (PSs) are of crucial importance in the effectiveness of photodynamic therapy (PDT) for cancer. Due to their high reactive oxygen species production and strong absorption in the wavelength range between 650 and 850 nm, where tissue light penetration is rather high, phthalocyanines (Pcs) have been studied as PSs of excellence. In this work, we report the evaluation of a phthalocyanine surrounded by a carbohydrate shell of sixteen galactose units distributed in a dendritic manner (PcGal16) as a new and efficient third generation PSs for PDT against two bladder cancer cell lines, HT-1376 and UMUC- 3. Here, we define the role of galacto-dendritic units in promoting the uptake of a Pc through interaction with GLUT1 and galectin-1. The photoactivation of PcGal16 induces cell death by generating oxidative stress. Although PDT with PcGal16 induces an increase on the activity of antioxidant enzymes immediately after PDT, bladder cancer cells are unable to recover from the PDT-induced damage effects for at least 72 h after treatment. PcGal16 co-localization with galectin-1 and GLUT1 and/or generation of oxidative stress after PcGal16 photoactivation induces changes in the levels of these proteins. Knockdown of galectin-1 and GLUT1, via small interfering RNA (siRNA), in bladder cancer cells decreases intracellular uptake and phototoxicity of PcGal16. The results reported herein show PcGal16 as a promising therapeutic agent for the treatment of bladder cancer, which is the fifth most common type of cancer with the highest rate of recurrence of any cancer.PLOS2014-04-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/27701http://hdl.handle.net/10316/27701https://doi.org/10.1371/journal.pone.0095529engPEREIRA, Patricía M. R. [et. al] - Galactodendritic Phthalocyanine Targets Carbohydrate-Binding Proteins Enhancing Photodynamic Therapy. "PLOS one". ISSN 1932-6203. Vol. 9 Nº. 4 (2014) p. e955291932-6203http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0095529Pereira, Patrícia M. R.Silva, SandrinaCavaleiro, José A. S.Ribeiro, Carlos A. F.Tomé, João P. C.Fernandes, Rosainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-05-29T09:42:29Zoai:estudogeral.uc.pt:10316/27701Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:53:39.838130Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Galactodendritic Phthalocyanine Targets Carbohydrate- Binding Proteins Enhancing Photodynamic Therapy |
title |
Galactodendritic Phthalocyanine Targets Carbohydrate- Binding Proteins Enhancing Photodynamic Therapy |
spellingShingle |
Galactodendritic Phthalocyanine Targets Carbohydrate- Binding Proteins Enhancing Photodynamic Therapy Pereira, Patrícia M. R. |
title_short |
Galactodendritic Phthalocyanine Targets Carbohydrate- Binding Proteins Enhancing Photodynamic Therapy |
title_full |
Galactodendritic Phthalocyanine Targets Carbohydrate- Binding Proteins Enhancing Photodynamic Therapy |
title_fullStr |
Galactodendritic Phthalocyanine Targets Carbohydrate- Binding Proteins Enhancing Photodynamic Therapy |
title_full_unstemmed |
Galactodendritic Phthalocyanine Targets Carbohydrate- Binding Proteins Enhancing Photodynamic Therapy |
title_sort |
Galactodendritic Phthalocyanine Targets Carbohydrate- Binding Proteins Enhancing Photodynamic Therapy |
author |
Pereira, Patrícia M. R. |
author_facet |
Pereira, Patrícia M. R. Silva, Sandrina Cavaleiro, José A. S. Ribeiro, Carlos A. F. Tomé, João P. C. Fernandes, Rosa |
author_role |
author |
author2 |
Silva, Sandrina Cavaleiro, José A. S. Ribeiro, Carlos A. F. Tomé, João P. C. Fernandes, Rosa |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Pereira, Patrícia M. R. Silva, Sandrina Cavaleiro, José A. S. Ribeiro, Carlos A. F. Tomé, João P. C. Fernandes, Rosa |
description |
Photosensitizers (PSs) are of crucial importance in the effectiveness of photodynamic therapy (PDT) for cancer. Due to their high reactive oxygen species production and strong absorption in the wavelength range between 650 and 850 nm, where tissue light penetration is rather high, phthalocyanines (Pcs) have been studied as PSs of excellence. In this work, we report the evaluation of a phthalocyanine surrounded by a carbohydrate shell of sixteen galactose units distributed in a dendritic manner (PcGal16) as a new and efficient third generation PSs for PDT against two bladder cancer cell lines, HT-1376 and UMUC- 3. Here, we define the role of galacto-dendritic units in promoting the uptake of a Pc through interaction with GLUT1 and galectin-1. The photoactivation of PcGal16 induces cell death by generating oxidative stress. Although PDT with PcGal16 induces an increase on the activity of antioxidant enzymes immediately after PDT, bladder cancer cells are unable to recover from the PDT-induced damage effects for at least 72 h after treatment. PcGal16 co-localization with galectin-1 and GLUT1 and/or generation of oxidative stress after PcGal16 photoactivation induces changes in the levels of these proteins. Knockdown of galectin-1 and GLUT1, via small interfering RNA (siRNA), in bladder cancer cells decreases intracellular uptake and phototoxicity of PcGal16. The results reported herein show PcGal16 as a promising therapeutic agent for the treatment of bladder cancer, which is the fifth most common type of cancer with the highest rate of recurrence of any cancer. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-04-24 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/27701 http://hdl.handle.net/10316/27701 https://doi.org/10.1371/journal.pone.0095529 |
url |
http://hdl.handle.net/10316/27701 https://doi.org/10.1371/journal.pone.0095529 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
PEREIRA, Patricía M. R. [et. al] - Galactodendritic Phthalocyanine Targets Carbohydrate-Binding Proteins Enhancing Photodynamic Therapy. "PLOS one". ISSN 1932-6203. Vol. 9 Nº. 4 (2014) p. e95529 1932-6203 http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0095529 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
PLOS |
publisher.none.fl_str_mv |
PLOS |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133822973902848 |