Neural network pricing of american put options

Detalhes bibliográficos
Autor(a) principal: Gaspar, Raquel
Data de Publicação: 2020
Outros Autores: Lopes, Sara D., Sequeira, Bernardo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.5/20015
Resumo: In this paper we use neural networks (NN), a machine learning method, to price American put options. We propose two distinct NN models – a simple one and a more complex one. The performance of two NN models is compared to the popular Least-Square Monte Carlo Method (LSM). This study relies on market American put option prices, with four large US companies as underlying – Bank of America Corp (BAC), General Motors (GM), Coca-Cola Company (KO) and Procter and Gamble Company (PG). Our dataset includes all options traded from December 2018 to March 2019. All methods show a good accuracy, however, once calibrated, NNs do better in terms of execution time and Root Mean Square Error (RMSE). Although on average both NN models perform better than LSM, the simpler model (NN model 1) performs quite close to LSM. On the other hand our NN model 2 substantially outperforms the other models, having a RMSE ca. 40% lower than that of the LSM. The lower RMSE is consistent across all companies, strike levels and maturities.
id RCAP_d5003210af63ad14fa404e61a639b831
oai_identifier_str oai:www.repository.utl.pt:10400.5/20015
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Neural network pricing of american put optionsMachine learningNeural networksAmerican put optionsLeast-square Monte CarloIn this paper we use neural networks (NN), a machine learning method, to price American put options. We propose two distinct NN models – a simple one and a more complex one. The performance of two NN models is compared to the popular Least-Square Monte Carlo Method (LSM). This study relies on market American put option prices, with four large US companies as underlying – Bank of America Corp (BAC), General Motors (GM), Coca-Cola Company (KO) and Procter and Gamble Company (PG). Our dataset includes all options traded from December 2018 to March 2019. All methods show a good accuracy, however, once calibrated, NNs do better in terms of execution time and Root Mean Square Error (RMSE). Although on average both NN models perform better than LSM, the simpler model (NN model 1) performs quite close to LSM. On the other hand our NN model 2 substantially outperforms the other models, having a RMSE ca. 40% lower than that of the LSM. The lower RMSE is consistent across all companies, strike levels and maturities.ISEG - REM - Research in Economics and MathematicsRepositório da Universidade de LisboaGaspar, RaquelLopes, Sara D.Sequeira, Bernardo2020-04-14T14:57:05Z2020-042020-04-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.5/20015engGaspar, Raquel, Sara D. Lopes e Bernardo Sequeira (2020). "Neural network pricing of american put options". Instituto Superior de Economia e Gestão – REM Working paper nº 0122 – 20202184-108Xinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-06T14:49:29Zoai:www.repository.utl.pt:10400.5/20015Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:04:50.247923Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Neural network pricing of american put options
title Neural network pricing of american put options
spellingShingle Neural network pricing of american put options
Gaspar, Raquel
Machine learning
Neural networks
American put options
Least-square Monte Carlo
title_short Neural network pricing of american put options
title_full Neural network pricing of american put options
title_fullStr Neural network pricing of american put options
title_full_unstemmed Neural network pricing of american put options
title_sort Neural network pricing of american put options
author Gaspar, Raquel
author_facet Gaspar, Raquel
Lopes, Sara D.
Sequeira, Bernardo
author_role author
author2 Lopes, Sara D.
Sequeira, Bernardo
author2_role author
author
dc.contributor.none.fl_str_mv Repositório da Universidade de Lisboa
dc.contributor.author.fl_str_mv Gaspar, Raquel
Lopes, Sara D.
Sequeira, Bernardo
dc.subject.por.fl_str_mv Machine learning
Neural networks
American put options
Least-square Monte Carlo
topic Machine learning
Neural networks
American put options
Least-square Monte Carlo
description In this paper we use neural networks (NN), a machine learning method, to price American put options. We propose two distinct NN models – a simple one and a more complex one. The performance of two NN models is compared to the popular Least-Square Monte Carlo Method (LSM). This study relies on market American put option prices, with four large US companies as underlying – Bank of America Corp (BAC), General Motors (GM), Coca-Cola Company (KO) and Procter and Gamble Company (PG). Our dataset includes all options traded from December 2018 to March 2019. All methods show a good accuracy, however, once calibrated, NNs do better in terms of execution time and Root Mean Square Error (RMSE). Although on average both NN models perform better than LSM, the simpler model (NN model 1) performs quite close to LSM. On the other hand our NN model 2 substantially outperforms the other models, having a RMSE ca. 40% lower than that of the LSM. The lower RMSE is consistent across all companies, strike levels and maturities.
publishDate 2020
dc.date.none.fl_str_mv 2020-04-14T14:57:05Z
2020-04
2020-04-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.5/20015
url http://hdl.handle.net/10400.5/20015
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Gaspar, Raquel, Sara D. Lopes e Bernardo Sequeira (2020). "Neural network pricing of american put options". Instituto Superior de Economia e Gestão – REM Working paper nº 0122 – 2020
2184-108X
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv ISEG - REM - Research in Economics and Mathematics
publisher.none.fl_str_mv ISEG - REM - Research in Economics and Mathematics
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131140400873472