Neural network pricing of american put options
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.5/20015 |
Resumo: | In this paper we use neural networks (NN), a machine learning method, to price American put options. We propose two distinct NN models – a simple one and a more complex one. The performance of two NN models is compared to the popular Least-Square Monte Carlo Method (LSM). This study relies on market American put option prices, with four large US companies as underlying – Bank of America Corp (BAC), General Motors (GM), Coca-Cola Company (KO) and Procter and Gamble Company (PG). Our dataset includes all options traded from December 2018 to March 2019. All methods show a good accuracy, however, once calibrated, NNs do better in terms of execution time and Root Mean Square Error (RMSE). Although on average both NN models perform better than LSM, the simpler model (NN model 1) performs quite close to LSM. On the other hand our NN model 2 substantially outperforms the other models, having a RMSE ca. 40% lower than that of the LSM. The lower RMSE is consistent across all companies, strike levels and maturities. |
id |
RCAP_d5003210af63ad14fa404e61a639b831 |
---|---|
oai_identifier_str |
oai:www.repository.utl.pt:10400.5/20015 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Neural network pricing of american put optionsMachine learningNeural networksAmerican put optionsLeast-square Monte CarloIn this paper we use neural networks (NN), a machine learning method, to price American put options. We propose two distinct NN models – a simple one and a more complex one. The performance of two NN models is compared to the popular Least-Square Monte Carlo Method (LSM). This study relies on market American put option prices, with four large US companies as underlying – Bank of America Corp (BAC), General Motors (GM), Coca-Cola Company (KO) and Procter and Gamble Company (PG). Our dataset includes all options traded from December 2018 to March 2019. All methods show a good accuracy, however, once calibrated, NNs do better in terms of execution time and Root Mean Square Error (RMSE). Although on average both NN models perform better than LSM, the simpler model (NN model 1) performs quite close to LSM. On the other hand our NN model 2 substantially outperforms the other models, having a RMSE ca. 40% lower than that of the LSM. The lower RMSE is consistent across all companies, strike levels and maturities.ISEG - REM - Research in Economics and MathematicsRepositório da Universidade de LisboaGaspar, RaquelLopes, Sara D.Sequeira, Bernardo2020-04-14T14:57:05Z2020-042020-04-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.5/20015engGaspar, Raquel, Sara D. Lopes e Bernardo Sequeira (2020). "Neural network pricing of american put options". Instituto Superior de Economia e Gestão – REM Working paper nº 0122 – 20202184-108Xinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-06T14:49:29Zoai:www.repository.utl.pt:10400.5/20015Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:04:50.247923Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Neural network pricing of american put options |
title |
Neural network pricing of american put options |
spellingShingle |
Neural network pricing of american put options Gaspar, Raquel Machine learning Neural networks American put options Least-square Monte Carlo |
title_short |
Neural network pricing of american put options |
title_full |
Neural network pricing of american put options |
title_fullStr |
Neural network pricing of american put options |
title_full_unstemmed |
Neural network pricing of american put options |
title_sort |
Neural network pricing of american put options |
author |
Gaspar, Raquel |
author_facet |
Gaspar, Raquel Lopes, Sara D. Sequeira, Bernardo |
author_role |
author |
author2 |
Lopes, Sara D. Sequeira, Bernardo |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Repositório da Universidade de Lisboa |
dc.contributor.author.fl_str_mv |
Gaspar, Raquel Lopes, Sara D. Sequeira, Bernardo |
dc.subject.por.fl_str_mv |
Machine learning Neural networks American put options Least-square Monte Carlo |
topic |
Machine learning Neural networks American put options Least-square Monte Carlo |
description |
In this paper we use neural networks (NN), a machine learning method, to price American put options. We propose two distinct NN models – a simple one and a more complex one. The performance of two NN models is compared to the popular Least-Square Monte Carlo Method (LSM). This study relies on market American put option prices, with four large US companies as underlying – Bank of America Corp (BAC), General Motors (GM), Coca-Cola Company (KO) and Procter and Gamble Company (PG). Our dataset includes all options traded from December 2018 to March 2019. All methods show a good accuracy, however, once calibrated, NNs do better in terms of execution time and Root Mean Square Error (RMSE). Although on average both NN models perform better than LSM, the simpler model (NN model 1) performs quite close to LSM. On the other hand our NN model 2 substantially outperforms the other models, having a RMSE ca. 40% lower than that of the LSM. The lower RMSE is consistent across all companies, strike levels and maturities. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-04-14T14:57:05Z 2020-04 2020-04-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.5/20015 |
url |
http://hdl.handle.net/10400.5/20015 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Gaspar, Raquel, Sara D. Lopes e Bernardo Sequeira (2020). "Neural network pricing of american put options". Instituto Superior de Economia e Gestão – REM Working paper nº 0122 – 2020 2184-108X |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
ISEG - REM - Research in Economics and Mathematics |
publisher.none.fl_str_mv |
ISEG - REM - Research in Economics and Mathematics |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131140400873472 |