Multi-camera and multi-algorithm architecture for visual perception onboard the ATLASCAR2
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/29133 |
Resumo: | Road detection is a crucial concern in Autonomous Navigation and Driving Assistance. Despite the multiple existing algorithms to detect the road, the literature does not offer a single effective algorithm for all situations. A global more robust set-up would count on multiple distinct algorithms running in parallel, or even from multiple cameras. Then, all these algorithms’ outputs should be merged or combined to produce a more robust and informed detection of the road lane, so that it works in more situations than each algorithm by itself. This dissertation integrated in the ATLAS-CAR2 project, developed at the University of Aveiro, proposes a ROS-based architecture to manage and combine multiple sources of lane detection algorithms ranging from the algorithms that return the spatial localization of the road lane lines and those whose results are the navigable zone represented as a polygon. The architecture is fully scalable and has proved to be a valuable tool to test and parametrise individual algorithms. The combination of the algorithms’ results used in this work uses a confidence based merging of individual detections. |
id |
RCAP_d61521b5b4b19ef1f7f56d7909fac20c |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/29133 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Multi-camera and multi-algorithm architecture for visual perception onboard the ATLASCAR2Visual perceptionData combinationComputer vision techniquesROS architectureRoad lane linesMultiple camerasMultiple algorithmsRoad detection is a crucial concern in Autonomous Navigation and Driving Assistance. Despite the multiple existing algorithms to detect the road, the literature does not offer a single effective algorithm for all situations. A global more robust set-up would count on multiple distinct algorithms running in parallel, or even from multiple cameras. Then, all these algorithms’ outputs should be merged or combined to produce a more robust and informed detection of the road lane, so that it works in more situations than each algorithm by itself. This dissertation integrated in the ATLAS-CAR2 project, developed at the University of Aveiro, proposes a ROS-based architecture to manage and combine multiple sources of lane detection algorithms ranging from the algorithms that return the spatial localization of the road lane lines and those whose results are the navigable zone represented as a polygon. The architecture is fully scalable and has proved to be a valuable tool to test and parametrise individual algorithms. The combination of the algorithms’ results used in this work uses a confidence based merging of individual detections.A deteção de estradas é uma questão crucial na Navegação Autónoma e na Assistência à Condução. Apesar de os múltiplos algoritmos existentes para detetar a estrada, a literatura não oferece um único algoritmo eficaz para todas as situações. Uma configuração global mais robusta incorporaria vários algoritmos distintos e executados em paralelo, ou mesmo baseado em múltiplas câmaras. Então, todos os resultados destes algoritmos devem ser fundidos ou combinados para produzir uma deteção mais robusta e informada da via da estrada, para que funcione em mais situações do que cada algoritmo funcionando individualmente. Esta dissertação integrada no projeto ATLASCAR2, desenvolvido na Universidade de Aveiro, propõe uma arquitetura baseada em ROS para gerir e combinar múltiplas fontes de algoritmos de deteção de vias da estrada, desde algoritmos que devolvem a localização espacial da faixa de rodagem até àqueles cujos resultados são a zona navegável representada como um polı́gono. A arquitetura é totalmente escalável e provou ser uma ferramenta valiosa para testar e parametrizar algoritmos individuais. A combinação dos resultados dos algoritmos utilizados neste trabalho utiliza uma combinação de deteções individuais baseada na confiança.2020-08-27T09:58:40Z2019-07-23T00:00:00Z2019-07-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/29133engAlmeida, Tiago Miguel Rodrigues deinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:56:22Zoai:ria.ua.pt:10773/29133Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:01:32.670535Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Multi-camera and multi-algorithm architecture for visual perception onboard the ATLASCAR2 |
title |
Multi-camera and multi-algorithm architecture for visual perception onboard the ATLASCAR2 |
spellingShingle |
Multi-camera and multi-algorithm architecture for visual perception onboard the ATLASCAR2 Almeida, Tiago Miguel Rodrigues de Visual perception Data combination Computer vision techniques ROS architecture Road lane lines Multiple cameras Multiple algorithms |
title_short |
Multi-camera and multi-algorithm architecture for visual perception onboard the ATLASCAR2 |
title_full |
Multi-camera and multi-algorithm architecture for visual perception onboard the ATLASCAR2 |
title_fullStr |
Multi-camera and multi-algorithm architecture for visual perception onboard the ATLASCAR2 |
title_full_unstemmed |
Multi-camera and multi-algorithm architecture for visual perception onboard the ATLASCAR2 |
title_sort |
Multi-camera and multi-algorithm architecture for visual perception onboard the ATLASCAR2 |
author |
Almeida, Tiago Miguel Rodrigues de |
author_facet |
Almeida, Tiago Miguel Rodrigues de |
author_role |
author |
dc.contributor.author.fl_str_mv |
Almeida, Tiago Miguel Rodrigues de |
dc.subject.por.fl_str_mv |
Visual perception Data combination Computer vision techniques ROS architecture Road lane lines Multiple cameras Multiple algorithms |
topic |
Visual perception Data combination Computer vision techniques ROS architecture Road lane lines Multiple cameras Multiple algorithms |
description |
Road detection is a crucial concern in Autonomous Navigation and Driving Assistance. Despite the multiple existing algorithms to detect the road, the literature does not offer a single effective algorithm for all situations. A global more robust set-up would count on multiple distinct algorithms running in parallel, or even from multiple cameras. Then, all these algorithms’ outputs should be merged or combined to produce a more robust and informed detection of the road lane, so that it works in more situations than each algorithm by itself. This dissertation integrated in the ATLAS-CAR2 project, developed at the University of Aveiro, proposes a ROS-based architecture to manage and combine multiple sources of lane detection algorithms ranging from the algorithms that return the spatial localization of the road lane lines and those whose results are the navigable zone represented as a polygon. The architecture is fully scalable and has proved to be a valuable tool to test and parametrise individual algorithms. The combination of the algorithms’ results used in this work uses a confidence based merging of individual detections. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-07-23T00:00:00Z 2019-07-23 2020-08-27T09:58:40Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/29133 |
url |
http://hdl.handle.net/10773/29133 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137671101022208 |