Multi-camera and multi-algorithm architecture for visual perception onboard the ATLASCAR2

Detalhes bibliográficos
Autor(a) principal: Almeida, Tiago Miguel Rodrigues de
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/29133
Resumo: Road detection is a crucial concern in Autonomous Navigation and Driving Assistance. Despite the multiple existing algorithms to detect the road, the literature does not offer a single effective algorithm for all situations. A global more robust set-up would count on multiple distinct algorithms running in parallel, or even from multiple cameras. Then, all these algorithms’ outputs should be merged or combined to produce a more robust and informed detection of the road lane, so that it works in more situations than each algorithm by itself. This dissertation integrated in the ATLAS-CAR2 project, developed at the University of Aveiro, proposes a ROS-based architecture to manage and combine multiple sources of lane detection algorithms ranging from the algorithms that return the spatial localization of the road lane lines and those whose results are the navigable zone represented as a polygon. The architecture is fully scalable and has proved to be a valuable tool to test and parametrise individual algorithms. The combination of the algorithms’ results used in this work uses a confidence based merging of individual detections.
id RCAP_d61521b5b4b19ef1f7f56d7909fac20c
oai_identifier_str oai:ria.ua.pt:10773/29133
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Multi-camera and multi-algorithm architecture for visual perception onboard the ATLASCAR2Visual perceptionData combinationComputer vision techniquesROS architectureRoad lane linesMultiple camerasMultiple algorithmsRoad detection is a crucial concern in Autonomous Navigation and Driving Assistance. Despite the multiple existing algorithms to detect the road, the literature does not offer a single effective algorithm for all situations. A global more robust set-up would count on multiple distinct algorithms running in parallel, or even from multiple cameras. Then, all these algorithms’ outputs should be merged or combined to produce a more robust and informed detection of the road lane, so that it works in more situations than each algorithm by itself. This dissertation integrated in the ATLAS-CAR2 project, developed at the University of Aveiro, proposes a ROS-based architecture to manage and combine multiple sources of lane detection algorithms ranging from the algorithms that return the spatial localization of the road lane lines and those whose results are the navigable zone represented as a polygon. The architecture is fully scalable and has proved to be a valuable tool to test and parametrise individual algorithms. The combination of the algorithms’ results used in this work uses a confidence based merging of individual detections.A deteção de estradas é uma questão crucial na Navegação Autónoma e na Assistência à Condução. Apesar de os múltiplos algoritmos existentes para detetar a estrada, a literatura não oferece um único algoritmo eficaz para todas as situações. Uma configuração global mais robusta incorporaria vários algoritmos distintos e executados em paralelo, ou mesmo baseado em múltiplas câmaras. Então, todos os resultados destes algoritmos devem ser fundidos ou combinados para produzir uma deteção mais robusta e informada da via da estrada, para que funcione em mais situações do que cada algoritmo funcionando individualmente. Esta dissertação integrada no projeto ATLASCAR2, desenvolvido na Universidade de Aveiro, propõe uma arquitetura baseada em ROS para gerir e combinar múltiplas fontes de algoritmos de deteção de vias da estrada, desde algoritmos que devolvem a localização espacial da faixa de rodagem até àqueles cujos resultados são a zona navegável representada como um polı́gono. A arquitetura é totalmente escalável e provou ser uma ferramenta valiosa para testar e parametrizar algoritmos individuais. A combinação dos resultados dos algoritmos utilizados neste trabalho utiliza uma combinação de deteções individuais baseada na confiança.2020-08-27T09:58:40Z2019-07-23T00:00:00Z2019-07-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/29133engAlmeida, Tiago Miguel Rodrigues deinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:56:22Zoai:ria.ua.pt:10773/29133Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:01:32.670535Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Multi-camera and multi-algorithm architecture for visual perception onboard the ATLASCAR2
title Multi-camera and multi-algorithm architecture for visual perception onboard the ATLASCAR2
spellingShingle Multi-camera and multi-algorithm architecture for visual perception onboard the ATLASCAR2
Almeida, Tiago Miguel Rodrigues de
Visual perception
Data combination
Computer vision techniques
ROS architecture
Road lane lines
Multiple cameras
Multiple algorithms
title_short Multi-camera and multi-algorithm architecture for visual perception onboard the ATLASCAR2
title_full Multi-camera and multi-algorithm architecture for visual perception onboard the ATLASCAR2
title_fullStr Multi-camera and multi-algorithm architecture for visual perception onboard the ATLASCAR2
title_full_unstemmed Multi-camera and multi-algorithm architecture for visual perception onboard the ATLASCAR2
title_sort Multi-camera and multi-algorithm architecture for visual perception onboard the ATLASCAR2
author Almeida, Tiago Miguel Rodrigues de
author_facet Almeida, Tiago Miguel Rodrigues de
author_role author
dc.contributor.author.fl_str_mv Almeida, Tiago Miguel Rodrigues de
dc.subject.por.fl_str_mv Visual perception
Data combination
Computer vision techniques
ROS architecture
Road lane lines
Multiple cameras
Multiple algorithms
topic Visual perception
Data combination
Computer vision techniques
ROS architecture
Road lane lines
Multiple cameras
Multiple algorithms
description Road detection is a crucial concern in Autonomous Navigation and Driving Assistance. Despite the multiple existing algorithms to detect the road, the literature does not offer a single effective algorithm for all situations. A global more robust set-up would count on multiple distinct algorithms running in parallel, or even from multiple cameras. Then, all these algorithms’ outputs should be merged or combined to produce a more robust and informed detection of the road lane, so that it works in more situations than each algorithm by itself. This dissertation integrated in the ATLAS-CAR2 project, developed at the University of Aveiro, proposes a ROS-based architecture to manage and combine multiple sources of lane detection algorithms ranging from the algorithms that return the spatial localization of the road lane lines and those whose results are the navigable zone represented as a polygon. The architecture is fully scalable and has proved to be a valuable tool to test and parametrise individual algorithms. The combination of the algorithms’ results used in this work uses a confidence based merging of individual detections.
publishDate 2019
dc.date.none.fl_str_mv 2019-07-23T00:00:00Z
2019-07-23
2020-08-27T09:58:40Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/29133
url http://hdl.handle.net/10773/29133
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137671101022208