Survival outcomes and prognosis in non-small cell lung cancer patients in a tertiary hospital in Spain

Detalhes bibliográficos
Autor(a) principal: Sousa, Alexandre Miguel Ramos de
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/145231
Resumo: Cancer is one of the main causes of mortality in the world and the number of new diagnosed cases are increasing every year. This number is expected to almost double in the next 20 years which causes health organizations to start taking steps to try to stop this increase in cases and to give the best possible care and treatment to cancer patients. With the evolution of technology and its solidification and proven evidence in the health world, it is essential to create projects in order to guarantee the best care and monitoring for patients, to try to prevent the evolution of the disease and understand the type of care that patients need. With this, it is expected that cancer survivors will be able to have a better quality of life and an improvement in the survival rates. The dataset used in this study is from patients diagnosed with lung cancer, one of the most common cancers and with a high mortality rate, specifically non-small cell lung cancer. The aim of the study is to identify risk factors that can affect patient survival. This dissertation discusses how information systems work in the area of health, how data are received, processed and stored. It is also explained how a pre-processing of the data was done in order to adapt the data to the models, a descriptive analysis to better understand our dataset and, lastly, a statistical survival analysis was performed using the Kaplan-Meier estimator, the logrank test and finally, the Cox multivariate proportional-hazard model. This dissertation was carried out within the scope of the European project CLARIFY [1], with the collaboration of the oncology department of the University Hospital Puerta Hierro de Majadahonda.
id RCAP_d61a306624b7f5a7b2c09f8d3b6b7f35
oai_identifier_str oai:run.unl.pt:10362/145231
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Survival outcomes and prognosis in non-small cell lung cancer patients in a tertiary hospital in SpainNon-small cell lung cancersurvival analysisKaplan-Meier estimatorlogrank testCox proportional-hazard modelDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaCancer is one of the main causes of mortality in the world and the number of new diagnosed cases are increasing every year. This number is expected to almost double in the next 20 years which causes health organizations to start taking steps to try to stop this increase in cases and to give the best possible care and treatment to cancer patients. With the evolution of technology and its solidification and proven evidence in the health world, it is essential to create projects in order to guarantee the best care and monitoring for patients, to try to prevent the evolution of the disease and understand the type of care that patients need. With this, it is expected that cancer survivors will be able to have a better quality of life and an improvement in the survival rates. The dataset used in this study is from patients diagnosed with lung cancer, one of the most common cancers and with a high mortality rate, specifically non-small cell lung cancer. The aim of the study is to identify risk factors that can affect patient survival. This dissertation discusses how information systems work in the area of health, how data are received, processed and stored. It is also explained how a pre-processing of the data was done in order to adapt the data to the models, a descriptive analysis to better understand our dataset and, lastly, a statistical survival analysis was performed using the Kaplan-Meier estimator, the logrank test and finally, the Cox multivariate proportional-hazard model. This dissertation was carried out within the scope of the European project CLARIFY [1], with the collaboration of the oncology department of the University Hospital Puerta Hierro de Majadahonda.O cancro é umas das principais causas de mortalidade no mundo e o número de novos casos diagnosticados tem aumentando todos os anos. É esperado que este número quase que duplique nos próximos 20 anos, o que faz com que as organizações de saúde comecem a tomar medidas para tentar impedir este aumento de casos e para que os pacientes com cancro tenham os melhores cuidados e tratamento possíveis. Com a evolução da tecnologia e com a sua solidificação e provas dadas no mundo da saúde, é essencial criar projetos de forma a conseguir garantir os melhores cuidados e acompanhamento dos pacientes para tentar prevenir a evolução da doença e perceber quais os cuidados que os pacientes podem vir a necessitar. Com isto, espera-se que os sobreviventes de cancro consigam ter melhor qualidade de vida e melhorar as taxas de sobrevivência. O dataset usado neste estudo é sobre doentes diagnosticados com cancro do pulmão, um dos cancros mais comuns e com uma grande taxa de mortalidade, mais especificamente com cancro do pulmão de células não pequenas. O objetivo deste estudo identificar fatores de risco que possam afetar a sobrevivência do paciente. Nesta dissertação é abordado como funcionam os sistemas de informação na área da saúde, como os dados são recebidos, processados e armazenados. Também é explicado como se realizou um pré-processamento dos dados para adaptar os dados aos modelos, uma análise descritiva para entender melhor o nosso dataset e, finalmente, uma análise estatística de sobrevivência foi realizada utilizando o estimador de Kaplan-Meier; o teste logrank e por fim, o modelo de risco proporcional multivariado de Cox. Esta dissertação foi realizada no âmbito do projeto europeu CLARIFY [1], em estreita colaboração com o departamento de oncologia do Hospital Universitário Puerta Hierro de Majadahonda.Sousa, PedroGuerreiro, GracindaRUNSousa, Alexandre Miguel Ramos de2022-11-04T14:59:38Z2022-022022-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/145231enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:24:48Zoai:run.unl.pt:10362/145231Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:51:46.840080Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Survival outcomes and prognosis in non-small cell lung cancer patients in a tertiary hospital in Spain
title Survival outcomes and prognosis in non-small cell lung cancer patients in a tertiary hospital in Spain
spellingShingle Survival outcomes and prognosis in non-small cell lung cancer patients in a tertiary hospital in Spain
Sousa, Alexandre Miguel Ramos de
Non-small cell lung cancer
survival analysis
Kaplan-Meier estimator
logrank test
Cox proportional-hazard model
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
title_short Survival outcomes and prognosis in non-small cell lung cancer patients in a tertiary hospital in Spain
title_full Survival outcomes and prognosis in non-small cell lung cancer patients in a tertiary hospital in Spain
title_fullStr Survival outcomes and prognosis in non-small cell lung cancer patients in a tertiary hospital in Spain
title_full_unstemmed Survival outcomes and prognosis in non-small cell lung cancer patients in a tertiary hospital in Spain
title_sort Survival outcomes and prognosis in non-small cell lung cancer patients in a tertiary hospital in Spain
author Sousa, Alexandre Miguel Ramos de
author_facet Sousa, Alexandre Miguel Ramos de
author_role author
dc.contributor.none.fl_str_mv Sousa, Pedro
Guerreiro, Gracinda
RUN
dc.contributor.author.fl_str_mv Sousa, Alexandre Miguel Ramos de
dc.subject.por.fl_str_mv Non-small cell lung cancer
survival analysis
Kaplan-Meier estimator
logrank test
Cox proportional-hazard model
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
topic Non-small cell lung cancer
survival analysis
Kaplan-Meier estimator
logrank test
Cox proportional-hazard model
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
description Cancer is one of the main causes of mortality in the world and the number of new diagnosed cases are increasing every year. This number is expected to almost double in the next 20 years which causes health organizations to start taking steps to try to stop this increase in cases and to give the best possible care and treatment to cancer patients. With the evolution of technology and its solidification and proven evidence in the health world, it is essential to create projects in order to guarantee the best care and monitoring for patients, to try to prevent the evolution of the disease and understand the type of care that patients need. With this, it is expected that cancer survivors will be able to have a better quality of life and an improvement in the survival rates. The dataset used in this study is from patients diagnosed with lung cancer, one of the most common cancers and with a high mortality rate, specifically non-small cell lung cancer. The aim of the study is to identify risk factors that can affect patient survival. This dissertation discusses how information systems work in the area of health, how data are received, processed and stored. It is also explained how a pre-processing of the data was done in order to adapt the data to the models, a descriptive analysis to better understand our dataset and, lastly, a statistical survival analysis was performed using the Kaplan-Meier estimator, the logrank test and finally, the Cox multivariate proportional-hazard model. This dissertation was carried out within the scope of the European project CLARIFY [1], with the collaboration of the oncology department of the University Hospital Puerta Hierro de Majadahonda.
publishDate 2022
dc.date.none.fl_str_mv 2022-11-04T14:59:38Z
2022-02
2022-02-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/145231
url http://hdl.handle.net/10362/145231
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138110370480128