Survival outcomes and prognosis in non-small cell lung cancer patients in a tertiary hospital in Spain
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/145231 |
Resumo: | Cancer is one of the main causes of mortality in the world and the number of new diagnosed cases are increasing every year. This number is expected to almost double in the next 20 years which causes health organizations to start taking steps to try to stop this increase in cases and to give the best possible care and treatment to cancer patients. With the evolution of technology and its solidification and proven evidence in the health world, it is essential to create projects in order to guarantee the best care and monitoring for patients, to try to prevent the evolution of the disease and understand the type of care that patients need. With this, it is expected that cancer survivors will be able to have a better quality of life and an improvement in the survival rates. The dataset used in this study is from patients diagnosed with lung cancer, one of the most common cancers and with a high mortality rate, specifically non-small cell lung cancer. The aim of the study is to identify risk factors that can affect patient survival. This dissertation discusses how information systems work in the area of health, how data are received, processed and stored. It is also explained how a pre-processing of the data was done in order to adapt the data to the models, a descriptive analysis to better understand our dataset and, lastly, a statistical survival analysis was performed using the Kaplan-Meier estimator, the logrank test and finally, the Cox multivariate proportional-hazard model. This dissertation was carried out within the scope of the European project CLARIFY [1], with the collaboration of the oncology department of the University Hospital Puerta Hierro de Majadahonda. |
id |
RCAP_d61a306624b7f5a7b2c09f8d3b6b7f35 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/145231 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Survival outcomes and prognosis in non-small cell lung cancer patients in a tertiary hospital in SpainNon-small cell lung cancersurvival analysisKaplan-Meier estimatorlogrank testCox proportional-hazard modelDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaCancer is one of the main causes of mortality in the world and the number of new diagnosed cases are increasing every year. This number is expected to almost double in the next 20 years which causes health organizations to start taking steps to try to stop this increase in cases and to give the best possible care and treatment to cancer patients. With the evolution of technology and its solidification and proven evidence in the health world, it is essential to create projects in order to guarantee the best care and monitoring for patients, to try to prevent the evolution of the disease and understand the type of care that patients need. With this, it is expected that cancer survivors will be able to have a better quality of life and an improvement in the survival rates. The dataset used in this study is from patients diagnosed with lung cancer, one of the most common cancers and with a high mortality rate, specifically non-small cell lung cancer. The aim of the study is to identify risk factors that can affect patient survival. This dissertation discusses how information systems work in the area of health, how data are received, processed and stored. It is also explained how a pre-processing of the data was done in order to adapt the data to the models, a descriptive analysis to better understand our dataset and, lastly, a statistical survival analysis was performed using the Kaplan-Meier estimator, the logrank test and finally, the Cox multivariate proportional-hazard model. This dissertation was carried out within the scope of the European project CLARIFY [1], with the collaboration of the oncology department of the University Hospital Puerta Hierro de Majadahonda.O cancro é umas das principais causas de mortalidade no mundo e o número de novos casos diagnosticados tem aumentando todos os anos. É esperado que este número quase que duplique nos próximos 20 anos, o que faz com que as organizações de saúde comecem a tomar medidas para tentar impedir este aumento de casos e para que os pacientes com cancro tenham os melhores cuidados e tratamento possíveis. Com a evolução da tecnologia e com a sua solidificação e provas dadas no mundo da saúde, é essencial criar projetos de forma a conseguir garantir os melhores cuidados e acompanhamento dos pacientes para tentar prevenir a evolução da doença e perceber quais os cuidados que os pacientes podem vir a necessitar. Com isto, espera-se que os sobreviventes de cancro consigam ter melhor qualidade de vida e melhorar as taxas de sobrevivência. O dataset usado neste estudo é sobre doentes diagnosticados com cancro do pulmão, um dos cancros mais comuns e com uma grande taxa de mortalidade, mais especificamente com cancro do pulmão de células não pequenas. O objetivo deste estudo identificar fatores de risco que possam afetar a sobrevivência do paciente. Nesta dissertação é abordado como funcionam os sistemas de informação na área da saúde, como os dados são recebidos, processados e armazenados. Também é explicado como se realizou um pré-processamento dos dados para adaptar os dados aos modelos, uma análise descritiva para entender melhor o nosso dataset e, finalmente, uma análise estatística de sobrevivência foi realizada utilizando o estimador de Kaplan-Meier; o teste logrank e por fim, o modelo de risco proporcional multivariado de Cox. Esta dissertação foi realizada no âmbito do projeto europeu CLARIFY [1], em estreita colaboração com o departamento de oncologia do Hospital Universitário Puerta Hierro de Majadahonda.Sousa, PedroGuerreiro, GracindaRUNSousa, Alexandre Miguel Ramos de2022-11-04T14:59:38Z2022-022022-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/145231enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:24:48Zoai:run.unl.pt:10362/145231Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:51:46.840080Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Survival outcomes and prognosis in non-small cell lung cancer patients in a tertiary hospital in Spain |
title |
Survival outcomes and prognosis in non-small cell lung cancer patients in a tertiary hospital in Spain |
spellingShingle |
Survival outcomes and prognosis in non-small cell lung cancer patients in a tertiary hospital in Spain Sousa, Alexandre Miguel Ramos de Non-small cell lung cancer survival analysis Kaplan-Meier estimator logrank test Cox proportional-hazard model Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
title_short |
Survival outcomes and prognosis in non-small cell lung cancer patients in a tertiary hospital in Spain |
title_full |
Survival outcomes and prognosis in non-small cell lung cancer patients in a tertiary hospital in Spain |
title_fullStr |
Survival outcomes and prognosis in non-small cell lung cancer patients in a tertiary hospital in Spain |
title_full_unstemmed |
Survival outcomes and prognosis in non-small cell lung cancer patients in a tertiary hospital in Spain |
title_sort |
Survival outcomes and prognosis in non-small cell lung cancer patients in a tertiary hospital in Spain |
author |
Sousa, Alexandre Miguel Ramos de |
author_facet |
Sousa, Alexandre Miguel Ramos de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Sousa, Pedro Guerreiro, Gracinda RUN |
dc.contributor.author.fl_str_mv |
Sousa, Alexandre Miguel Ramos de |
dc.subject.por.fl_str_mv |
Non-small cell lung cancer survival analysis Kaplan-Meier estimator logrank test Cox proportional-hazard model Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
topic |
Non-small cell lung cancer survival analysis Kaplan-Meier estimator logrank test Cox proportional-hazard model Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
description |
Cancer is one of the main causes of mortality in the world and the number of new diagnosed cases are increasing every year. This number is expected to almost double in the next 20 years which causes health organizations to start taking steps to try to stop this increase in cases and to give the best possible care and treatment to cancer patients. With the evolution of technology and its solidification and proven evidence in the health world, it is essential to create projects in order to guarantee the best care and monitoring for patients, to try to prevent the evolution of the disease and understand the type of care that patients need. With this, it is expected that cancer survivors will be able to have a better quality of life and an improvement in the survival rates. The dataset used in this study is from patients diagnosed with lung cancer, one of the most common cancers and with a high mortality rate, specifically non-small cell lung cancer. The aim of the study is to identify risk factors that can affect patient survival. This dissertation discusses how information systems work in the area of health, how data are received, processed and stored. It is also explained how a pre-processing of the data was done in order to adapt the data to the models, a descriptive analysis to better understand our dataset and, lastly, a statistical survival analysis was performed using the Kaplan-Meier estimator, the logrank test and finally, the Cox multivariate proportional-hazard model. This dissertation was carried out within the scope of the European project CLARIFY [1], with the collaboration of the oncology department of the University Hospital Puerta Hierro de Majadahonda. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-11-04T14:59:38Z 2022-02 2022-02-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/145231 |
url |
http://hdl.handle.net/10362/145231 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138110370480128 |