Performance of new gellan gum hydrogels combined with human articular chondrocytes for cartilage regeneration when subcutaneously implanted in nude mice
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/20374 |
Resumo: | Gellan gum is a polysaccharide that has been recently proposed by our group for cartilage tissueengineering applications. It is commonly used in the food and pharmaceutical industry and has the ability to form stable gels without the use of harsh reagents. Gellan gum can function as a minimally invasive injectable system, gelling inside the body in situ under physiological conditions and efficiently adapting to the defect site. In this work, gellan gum hydrogels were combined with human articular chondrocytes (hACs) and were subcutaneously implanted in nude mice for 4 weeks. The implants were collected for histological (haematoxylin and eosin and Alcian blue staining), biochemical [dimethylmethylene blue (GAG) assay], molecular (real-time PCR analyses for collagen types I, II and X, aggrecan) and immunological analyses (immunolocalization of collagen types I and II). The results showed a homogeneous cell distribution and the typical round-shaped morphology of the chondrocytes within the matrix upon implantation. Proteoglycans synthesis was detected by Alcian blue staining and a statistically significant increase of proteoglycans content was measured with the GAG assay quantified from 1 to 4 weeks of implantation. Real-time PCR analyses showed a statistically significant upregulation of collagen type II and aggrecan levels in the same periods. The immunological assays suggest deposition of collagen type II along with some collagen type I. The overall data shows that gellan gum hydrogels adequately support the growth and ECM deposition of human articular chondrocytes when implanted subcutaneously in nude mice. |
id |
RCAP_d63dec21fe46db6c11f84be157ee4a27 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/20374 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Performance of new gellan gum hydrogels combined with human articular chondrocytes for cartilage regeneration when subcutaneously implanted in nude miceCartilageTissue engineeringHydrogelAdipose stem cellsIn vivoNatural biomaterialScience & TechnologyGellan gum is a polysaccharide that has been recently proposed by our group for cartilage tissueengineering applications. It is commonly used in the food and pharmaceutical industry and has the ability to form stable gels without the use of harsh reagents. Gellan gum can function as a minimally invasive injectable system, gelling inside the body in situ under physiological conditions and efficiently adapting to the defect site. In this work, gellan gum hydrogels were combined with human articular chondrocytes (hACs) and were subcutaneously implanted in nude mice for 4 weeks. The implants were collected for histological (haematoxylin and eosin and Alcian blue staining), biochemical [dimethylmethylene blue (GAG) assay], molecular (real-time PCR analyses for collagen types I, II and X, aggrecan) and immunological analyses (immunolocalization of collagen types I and II). The results showed a homogeneous cell distribution and the typical round-shaped morphology of the chondrocytes within the matrix upon implantation. Proteoglycans synthesis was detected by Alcian blue staining and a statistically significant increase of proteoglycans content was measured with the GAG assay quantified from 1 to 4 weeks of implantation. Real-time PCR analyses showed a statistically significant upregulation of collagen type II and aggrecan levels in the same periods. The immunological assays suggest deposition of collagen type II along with some collagen type I. The overall data shows that gellan gum hydrogels adequately support the growth and ECM deposition of human articular chondrocytes when implanted subcutaneously in nude mice.J. T. Oliveira would like to acknowledge the Portuguese Foundation for Science and Technology (FCT) for his grant (SFP,H/BD17135/2004). The authors would like to thank the patients at Hospital de S. Marcos, Braga, Portugal, for the donation of the biological samples and the medical staff for their help and support. The authors would also like to thank the Institute for Health and Life Sciences (ICVS), University of Minho, Braga, Portugal, for allowing the use of their research facilities. This work was carried out under the scope of European NoE EXPERTISSUES (Project No. NMP3-CT-2004-500283) and partially supported by the European Project HIPPOCRATES (No. STRP 505758-1).WileyUniversidade do MinhoOliveira, J. T.Santos, T. C.Martins, L.Silva, M. A.Marques, A. P.Castro, António G.Neves, N. M.Reis, R. L.20092009-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/20374eng1932-700510.1002/term.18419598145http://onlinelibrary.wiley.com/info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-11T06:50:46Zoai:repositorium.sdum.uminho.pt:1822/20374Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-11T06:50:46Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Performance of new gellan gum hydrogels combined with human articular chondrocytes for cartilage regeneration when subcutaneously implanted in nude mice |
title |
Performance of new gellan gum hydrogels combined with human articular chondrocytes for cartilage regeneration when subcutaneously implanted in nude mice |
spellingShingle |
Performance of new gellan gum hydrogels combined with human articular chondrocytes for cartilage regeneration when subcutaneously implanted in nude mice Oliveira, J. T. Cartilage Tissue engineering Hydrogel Adipose stem cells In vivo Natural biomaterial Science & Technology |
title_short |
Performance of new gellan gum hydrogels combined with human articular chondrocytes for cartilage regeneration when subcutaneously implanted in nude mice |
title_full |
Performance of new gellan gum hydrogels combined with human articular chondrocytes for cartilage regeneration when subcutaneously implanted in nude mice |
title_fullStr |
Performance of new gellan gum hydrogels combined with human articular chondrocytes for cartilage regeneration when subcutaneously implanted in nude mice |
title_full_unstemmed |
Performance of new gellan gum hydrogels combined with human articular chondrocytes for cartilage regeneration when subcutaneously implanted in nude mice |
title_sort |
Performance of new gellan gum hydrogels combined with human articular chondrocytes for cartilage regeneration when subcutaneously implanted in nude mice |
author |
Oliveira, J. T. |
author_facet |
Oliveira, J. T. Santos, T. C. Martins, L. Silva, M. A. Marques, A. P. Castro, António G. Neves, N. M. Reis, R. L. |
author_role |
author |
author2 |
Santos, T. C. Martins, L. Silva, M. A. Marques, A. P. Castro, António G. Neves, N. M. Reis, R. L. |
author2_role |
author author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Oliveira, J. T. Santos, T. C. Martins, L. Silva, M. A. Marques, A. P. Castro, António G. Neves, N. M. Reis, R. L. |
dc.subject.por.fl_str_mv |
Cartilage Tissue engineering Hydrogel Adipose stem cells In vivo Natural biomaterial Science & Technology |
topic |
Cartilage Tissue engineering Hydrogel Adipose stem cells In vivo Natural biomaterial Science & Technology |
description |
Gellan gum is a polysaccharide that has been recently proposed by our group for cartilage tissueengineering applications. It is commonly used in the food and pharmaceutical industry and has the ability to form stable gels without the use of harsh reagents. Gellan gum can function as a minimally invasive injectable system, gelling inside the body in situ under physiological conditions and efficiently adapting to the defect site. In this work, gellan gum hydrogels were combined with human articular chondrocytes (hACs) and were subcutaneously implanted in nude mice for 4 weeks. The implants were collected for histological (haematoxylin and eosin and Alcian blue staining), biochemical [dimethylmethylene blue (GAG) assay], molecular (real-time PCR analyses for collagen types I, II and X, aggrecan) and immunological analyses (immunolocalization of collagen types I and II). The results showed a homogeneous cell distribution and the typical round-shaped morphology of the chondrocytes within the matrix upon implantation. Proteoglycans synthesis was detected by Alcian blue staining and a statistically significant increase of proteoglycans content was measured with the GAG assay quantified from 1 to 4 weeks of implantation. Real-time PCR analyses showed a statistically significant upregulation of collagen type II and aggrecan levels in the same periods. The immunological assays suggest deposition of collagen type II along with some collagen type I. The overall data shows that gellan gum hydrogels adequately support the growth and ECM deposition of human articular chondrocytes when implanted subcutaneously in nude mice. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009 2009-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/20374 |
url |
http://hdl.handle.net/1822/20374 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1932-7005 10.1002/term.184 19598145 http://onlinelibrary.wiley.com/ |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Wiley |
publisher.none.fl_str_mv |
Wiley |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817545111599316992 |