Visualization techniques for Big Data
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/35736 |
Resumo: | Dissertação de Mestrado em Engenharia Informática apresentada à Faculdade de Ciências e Tecnologia da Universidade de Coimbra. |
id |
RCAP_d67bb3f86ba62e823809e6c22f53f0c4 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/35736 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Visualization techniques for Big DataAnti-aliasingBig DataDatabaseGISGLSLGPGPUGPUHeatmapOpenCLShadersVisualizationDissertação de Mestrado em Engenharia Informática apresentada à Faculdade de Ciências e Tecnologia da Universidade de Coimbra.Informação geográfica permite que as decisões comerciais relativamente ao mercado de retalho sejam feitas de forma informada. A visualização de relações demográficas, apoia a análise de mercado, a escolha de localizações, comercialização, distribuição, entregas, entre outras. Esta Tese apresenta um sistema de visualização de informação para esplorar os registos de vendas do maior retalhista em Portugal, num contexto geográfico, que integra também informação demográfica e administrativa. Este trabalho apresenta melhorias sobre outras implementações por combinar: Primeiro a flexibilidade e escalabilidade dos Kernels de OpenCL, usados para processar os dados originais em tempo de visualização eliminando a necessidade de um pré-processamento, e segundo, o uso de metodologias de renderização modernas, através da API OpenGL, para produzir uma ferramenta de visualização de elevada qualidade gráfica e rica em informação. Os nossos resultados não deixam dúvidas sobre as vantagens do processamento paralelo, mesmo em GPUs de baixa gama, nem sobre a flexibilidade e qualidade visual que os investigadores são capazes de alcançar, ao aplicar tempo na pesquisa e implementação de técnicas apropriadas de rendering que façam uso do pipeline programável dos chips gráficos.Geographic information enables retailers to make informed decisions. Visualizing geographic and demographic relationships, supports market analysis, site selection, merchandising, distribution, delivery, among others. This thesis presents a visualization system to explore sales records from the major retailer in Portugal, in a geographic context, which integrates administrative and demographic information. We improve upon previous implementations by combining: First the flexibility and scalability of OpenCL kernels, used to process the original dataset in real visualization time, eliminating the necessity for preprocessing and second the use of modern rendering methodologies, through the OpenGL API, to produce a high detailed and information rich visualization. Our results leave no doubt to the advantages of parallel processing, even in low end GPUs, and to the flexibility and visual quality attainable when researchers take the extra step of researching and implementing adequate rendering techniques for the programmable graphic pipeline.2015-09-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://hdl.handle.net/10316/35736http://hdl.handle.net/10316/35736TID:201537745engAmaro, Hugo Dinis Pereirinha da Silvainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-01-21T17:34:32Zoai:estudogeral.uc.pt:10316/35736Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:54:31.615080Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Visualization techniques for Big Data |
title |
Visualization techniques for Big Data |
spellingShingle |
Visualization techniques for Big Data Amaro, Hugo Dinis Pereirinha da Silva Anti-aliasing Big Data Database GIS GLSL GPGPU GPU Heatmap OpenCL Shaders Visualization |
title_short |
Visualization techniques for Big Data |
title_full |
Visualization techniques for Big Data |
title_fullStr |
Visualization techniques for Big Data |
title_full_unstemmed |
Visualization techniques for Big Data |
title_sort |
Visualization techniques for Big Data |
author |
Amaro, Hugo Dinis Pereirinha da Silva |
author_facet |
Amaro, Hugo Dinis Pereirinha da Silva |
author_role |
author |
dc.contributor.author.fl_str_mv |
Amaro, Hugo Dinis Pereirinha da Silva |
dc.subject.por.fl_str_mv |
Anti-aliasing Big Data Database GIS GLSL GPGPU GPU Heatmap OpenCL Shaders Visualization |
topic |
Anti-aliasing Big Data Database GIS GLSL GPGPU GPU Heatmap OpenCL Shaders Visualization |
description |
Dissertação de Mestrado em Engenharia Informática apresentada à Faculdade de Ciências e Tecnologia da Universidade de Coimbra. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-09-16 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/35736 http://hdl.handle.net/10316/35736 TID:201537745 |
url |
http://hdl.handle.net/10316/35736 |
identifier_str_mv |
TID:201537745 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133832419475456 |