Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data

Detalhes bibliográficos
Autor(a) principal: Santos, S. P. Amor dos
Data de Publicação: 2014
Outros Autores: Carvalho, J., Fiolhais, M. C. N., Galhardo, B., Veloso, F., Wolters, H., ATLAS Collaboration
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/109402
https://doi.org/10.1140/epjc/s10052-014-3071-4
Resumo: This paper presents the electron and photon energy calibration achieved with the ATLAS detector using about 25 fb-1 of LHC proton–proton collision data taken at centre-of-mass energies of (Equation Present) and 8 TeV. The reconstruction of electron and photon energies is optimised using multivariate algorithms. The response of the calorimeter layers is equalised in data and simulation, and the longitudinal profile of the electromagnetic showers is exploited to estimate the passive material in front of the calorimeter and reoptimise the detector simulation. After all corrections, the Z resonance is used to set the absolute energy scale. For electrons from Z decays, the achieved calibration is typically accurate to 0.05 % in most of the detector acceptance, rising to 0.2 % in regions with large amounts of passive material. The remaining inaccuracy is less than 0.2–1 % for electrons with a transverse energy of 10 GeV, and is on average 0.3 % for photons. The detector resolution is determined with a relative inaccuracy of less than 10 % for electrons and photons up to 60 GeV transverse energy, rising to 40 % for transverse energies above 500 GeV.
id RCAP_d6d1c8bc94b143550d116b7e1bf88cd1
oai_identifier_str oai:estudogeral.uc.pt:10316/109402
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Electron and photon energy calibration with the ATLAS detector using LHC Run 1 dataThis paper presents the electron and photon energy calibration achieved with the ATLAS detector using about 25 fb-1 of LHC proton–proton collision data taken at centre-of-mass energies of (Equation Present) and 8 TeV. The reconstruction of electron and photon energies is optimised using multivariate algorithms. The response of the calorimeter layers is equalised in data and simulation, and the longitudinal profile of the electromagnetic showers is exploited to estimate the passive material in front of the calorimeter and reoptimise the detector simulation. After all corrections, the Z resonance is used to set the absolute energy scale. For electrons from Z decays, the achieved calibration is typically accurate to 0.05 % in most of the detector acceptance, rising to 0.2 % in regions with large amounts of passive material. The remaining inaccuracy is less than 0.2–1 % for electrons with a transverse energy of 10 GeV, and is on average 0.3 % for photons. The detector resolution is determined with a relative inaccuracy of less than 10 % for electrons and photons up to 60 GeV transverse energy, rising to 40 % for transverse energies above 500 GeV.We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS,MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, ICORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, The Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, UK; DOE and NSF, USA. The crucial computing support from allWLCGpartners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (The Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.Springer Nature2014info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/109402http://hdl.handle.net/10316/109402https://doi.org/10.1140/epjc/s10052-014-3071-4engSantos, S. P. Amor dosCarvalho, J.Fiolhais, M. C. N.Galhardo, B.Veloso, F.Wolters, H.ATLAS Collaborationinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-10-12T11:35:10Zoai:estudogeral.uc.pt:10316/109402Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:25:36.358675Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data
title Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data
spellingShingle Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data
Santos, S. P. Amor dos
title_short Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data
title_full Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data
title_fullStr Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data
title_full_unstemmed Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data
title_sort Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data
author Santos, S. P. Amor dos
author_facet Santos, S. P. Amor dos
Carvalho, J.
Fiolhais, M. C. N.
Galhardo, B.
Veloso, F.
Wolters, H.
ATLAS Collaboration
author_role author
author2 Carvalho, J.
Fiolhais, M. C. N.
Galhardo, B.
Veloso, F.
Wolters, H.
ATLAS Collaboration
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Santos, S. P. Amor dos
Carvalho, J.
Fiolhais, M. C. N.
Galhardo, B.
Veloso, F.
Wolters, H.
ATLAS Collaboration
description This paper presents the electron and photon energy calibration achieved with the ATLAS detector using about 25 fb-1 of LHC proton–proton collision data taken at centre-of-mass energies of (Equation Present) and 8 TeV. The reconstruction of electron and photon energies is optimised using multivariate algorithms. The response of the calorimeter layers is equalised in data and simulation, and the longitudinal profile of the electromagnetic showers is exploited to estimate the passive material in front of the calorimeter and reoptimise the detector simulation. After all corrections, the Z resonance is used to set the absolute energy scale. For electrons from Z decays, the achieved calibration is typically accurate to 0.05 % in most of the detector acceptance, rising to 0.2 % in regions with large amounts of passive material. The remaining inaccuracy is less than 0.2–1 % for electrons with a transverse energy of 10 GeV, and is on average 0.3 % for photons. The detector resolution is determined with a relative inaccuracy of less than 10 % for electrons and photons up to 60 GeV transverse energy, rising to 40 % for transverse energies above 500 GeV.
publishDate 2014
dc.date.none.fl_str_mv 2014
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/109402
http://hdl.handle.net/10316/109402
https://doi.org/10.1140/epjc/s10052-014-3071-4
url http://hdl.handle.net/10316/109402
https://doi.org/10.1140/epjc/s10052-014-3071-4
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Springer Nature
publisher.none.fl_str_mv Springer Nature
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134138202062848