Local analysis of the feasible primal-dual interior-point method
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/7717 https://doi.org/10.1007/s10589-007-9075-3 |
Resumo: | Abstract In this paper we analyze the rate of local convergence of the Newton primal-dual interior-point method when the iterates are kept strictly feasible with respect to the inequality constraints. It is shown under the classical conditions that the rate is q-quadratic when the functions associated to the binding inequality constraints are concave. In general, the q-quadratic rate is achieved provided the step in the primal variables does not become asymptotically orthogonal to any of the gradients of the binding inequality constraints. Some preliminary numerical experience showed that the feasible method can be implemented in a relatively efficient way, requiring a reduced number of function and derivative evaluations. Moreover, the feasible method is competitive with the classical infeasible primal-dual interior-point method in terms of number of iterations and robustness. |
id |
RCAP_d6f04465e63bbb7f9d59210b1a084039 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/7717 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Local analysis of the feasible primal-dual interior-point methodAbstract In this paper we analyze the rate of local convergence of the Newton primal-dual interior-point method when the iterates are kept strictly feasible with respect to the inequality constraints. It is shown under the classical conditions that the rate is q-quadratic when the functions associated to the binding inequality constraints are concave. In general, the q-quadratic rate is achieved provided the step in the primal variables does not become asymptotically orthogonal to any of the gradients of the binding inequality constraints. Some preliminary numerical experience showed that the feasible method can be implemented in a relatively efficient way, requiring a reduced number of function and derivative evaluations. Moreover, the feasible method is competitive with the classical infeasible primal-dual interior-point method in terms of number of iterations and robustness.2008info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/7717http://hdl.handle.net/10316/7717https://doi.org/10.1007/s10589-007-9075-3engComputational Optimization and Applications. 40:1 (2008) 41-57Silva, R.Soares, J.Vicente, L.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2021-11-09T10:26:27Zoai:estudogeral.uc.pt:10316/7717Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:00:44.074195Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Local analysis of the feasible primal-dual interior-point method |
title |
Local analysis of the feasible primal-dual interior-point method |
spellingShingle |
Local analysis of the feasible primal-dual interior-point method Silva, R. |
title_short |
Local analysis of the feasible primal-dual interior-point method |
title_full |
Local analysis of the feasible primal-dual interior-point method |
title_fullStr |
Local analysis of the feasible primal-dual interior-point method |
title_full_unstemmed |
Local analysis of the feasible primal-dual interior-point method |
title_sort |
Local analysis of the feasible primal-dual interior-point method |
author |
Silva, R. |
author_facet |
Silva, R. Soares, J. Vicente, L. |
author_role |
author |
author2 |
Soares, J. Vicente, L. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Silva, R. Soares, J. Vicente, L. |
description |
Abstract In this paper we analyze the rate of local convergence of the Newton primal-dual interior-point method when the iterates are kept strictly feasible with respect to the inequality constraints. It is shown under the classical conditions that the rate is q-quadratic when the functions associated to the binding inequality constraints are concave. In general, the q-quadratic rate is achieved provided the step in the primal variables does not become asymptotically orthogonal to any of the gradients of the binding inequality constraints. Some preliminary numerical experience showed that the feasible method can be implemented in a relatively efficient way, requiring a reduced number of function and derivative evaluations. Moreover, the feasible method is competitive with the classical infeasible primal-dual interior-point method in terms of number of iterations and robustness. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/7717 http://hdl.handle.net/10316/7717 https://doi.org/10.1007/s10589-007-9075-3 |
url |
http://hdl.handle.net/10316/7717 https://doi.org/10.1007/s10589-007-9075-3 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Computational Optimization and Applications. 40:1 (2008) 41-57 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133897606299648 |