Local analysis of the feasible primal-dual interior-point method

Detalhes bibliográficos
Autor(a) principal: Silva, R.
Data de Publicação: 2008
Outros Autores: Soares, J., Vicente, L.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/7717
https://doi.org/10.1007/s10589-007-9075-3
Resumo: Abstract In this paper we analyze the rate of local convergence of the Newton primal-dual interior-point method when the iterates are kept strictly feasible with respect to the inequality constraints. It is shown under the classical conditions that the rate is q-quadratic when the functions associated to the binding inequality constraints are concave. In general, the q-quadratic rate is achieved provided the step in the primal variables does not become asymptotically orthogonal to any of the gradients of the binding inequality constraints. Some preliminary numerical experience showed that the feasible method can be implemented in a relatively efficient way, requiring a reduced number of function and derivative evaluations. Moreover, the feasible method is competitive with the classical infeasible primal-dual interior-point method in terms of number of iterations and robustness.
id RCAP_d6f04465e63bbb7f9d59210b1a084039
oai_identifier_str oai:estudogeral.uc.pt:10316/7717
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Local analysis of the feasible primal-dual interior-point methodAbstract In this paper we analyze the rate of local convergence of the Newton primal-dual interior-point method when the iterates are kept strictly feasible with respect to the inequality constraints. It is shown under the classical conditions that the rate is q-quadratic when the functions associated to the binding inequality constraints are concave. In general, the q-quadratic rate is achieved provided the step in the primal variables does not become asymptotically orthogonal to any of the gradients of the binding inequality constraints. Some preliminary numerical experience showed that the feasible method can be implemented in a relatively efficient way, requiring a reduced number of function and derivative evaluations. Moreover, the feasible method is competitive with the classical infeasible primal-dual interior-point method in terms of number of iterations and robustness.2008info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/7717http://hdl.handle.net/10316/7717https://doi.org/10.1007/s10589-007-9075-3engComputational Optimization and Applications. 40:1 (2008) 41-57Silva, R.Soares, J.Vicente, L.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2021-11-09T10:26:27Zoai:estudogeral.uc.pt:10316/7717Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:00:44.074195Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Local analysis of the feasible primal-dual interior-point method
title Local analysis of the feasible primal-dual interior-point method
spellingShingle Local analysis of the feasible primal-dual interior-point method
Silva, R.
title_short Local analysis of the feasible primal-dual interior-point method
title_full Local analysis of the feasible primal-dual interior-point method
title_fullStr Local analysis of the feasible primal-dual interior-point method
title_full_unstemmed Local analysis of the feasible primal-dual interior-point method
title_sort Local analysis of the feasible primal-dual interior-point method
author Silva, R.
author_facet Silva, R.
Soares, J.
Vicente, L.
author_role author
author2 Soares, J.
Vicente, L.
author2_role author
author
dc.contributor.author.fl_str_mv Silva, R.
Soares, J.
Vicente, L.
description Abstract In this paper we analyze the rate of local convergence of the Newton primal-dual interior-point method when the iterates are kept strictly feasible with respect to the inequality constraints. It is shown under the classical conditions that the rate is q-quadratic when the functions associated to the binding inequality constraints are concave. In general, the q-quadratic rate is achieved provided the step in the primal variables does not become asymptotically orthogonal to any of the gradients of the binding inequality constraints. Some preliminary numerical experience showed that the feasible method can be implemented in a relatively efficient way, requiring a reduced number of function and derivative evaluations. Moreover, the feasible method is competitive with the classical infeasible primal-dual interior-point method in terms of number of iterations and robustness.
publishDate 2008
dc.date.none.fl_str_mv 2008
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/7717
http://hdl.handle.net/10316/7717
https://doi.org/10.1007/s10589-007-9075-3
url http://hdl.handle.net/10316/7717
https://doi.org/10.1007/s10589-007-9075-3
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Computational Optimization and Applications. 40:1 (2008) 41-57
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133897606299648