Advanced techniques for estimation of the tensile fracture toughness of adhesive joints
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/15915 |
Resumo: | Adhesive bonding has become more efficient in the last few decades due to the adhesives developments, granting higher strength and ductility. As a result, adhesives are being increasingly used in industries such as the automotive, aerospace and construction. Thus, it is highly important to predict the strength of bonded joints to assess the feasibility of joining during the fabrication process of components (e.g. due to complex geometries) or for repairing purposes. When using the Finite Element Method with advanced propagation laws, the tensile (Gnc) and shear (Gsc) fracture toughness of adhesive joints must be determined with accuracy. Several conventional methods to obtain Gnc and Gsc exist in the literature, mainly based on Linear Elastic Fracture Mechanics (LEFM). The J-integral technique is accurate to measure these parameters for adhesives with high ductility. In this work, the J-integral is used to obtain Gnc by the Double-Cantilever Beam (DCB) test. An optical measurement method is developed for the evaluation of the crack tip opening and adherends rotation at the crack tip during the test, supported by a Matlab® sub-routine for the automated extraction of these quantities. As output of this work, an optical method that allows an easier and quicker extraction of the parameters to obtain Gnc than the available methods is proposed (by the J-integral technique) and some results are presented regarding joints with different geometry and adherend material. |
id |
RCAP_d72086e972558f0e551efb6e07b80abe |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/15915 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Advanced techniques for estimation of the tensile fracture toughness of adhesive jointsFibresFracture toughnessDamage mechanicsJoiningAdhesive bonding has become more efficient in the last few decades due to the adhesives developments, granting higher strength and ductility. As a result, adhesives are being increasingly used in industries such as the automotive, aerospace and construction. Thus, it is highly important to predict the strength of bonded joints to assess the feasibility of joining during the fabrication process of components (e.g. due to complex geometries) or for repairing purposes. When using the Finite Element Method with advanced propagation laws, the tensile (Gnc) and shear (Gsc) fracture toughness of adhesive joints must be determined with accuracy. Several conventional methods to obtain Gnc and Gsc exist in the literature, mainly based on Linear Elastic Fracture Mechanics (LEFM). The J-integral technique is accurate to measure these parameters for adhesives with high ductility. In this work, the J-integral is used to obtain Gnc by the Double-Cantilever Beam (DCB) test. An optical measurement method is developed for the evaluation of the crack tip opening and adherends rotation at the crack tip during the test, supported by a Matlab® sub-routine for the automated extraction of these quantities. As output of this work, an optical method that allows an easier and quicker extraction of the parameters to obtain Gnc than the available methods is proposed (by the J-integral technique) and some results are presented regarding joints with different geometry and adherend material.Italian Group of FractureRepositório Científico do Instituto Politécnico do PortoCampilho, R.D.S.G.Banea, M.D.da Silva, L.F.M.2020-04-29T10:13:38Z20142014-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/15915eng10.3221/IGF-ESIS.31.01info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T13:01:19Zoai:recipp.ipp.pt:10400.22/15915Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:35:36.097588Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Advanced techniques for estimation of the tensile fracture toughness of adhesive joints |
title |
Advanced techniques for estimation of the tensile fracture toughness of adhesive joints |
spellingShingle |
Advanced techniques for estimation of the tensile fracture toughness of adhesive joints Campilho, R.D.S.G. Fibres Fracture toughness Damage mechanics Joining |
title_short |
Advanced techniques for estimation of the tensile fracture toughness of adhesive joints |
title_full |
Advanced techniques for estimation of the tensile fracture toughness of adhesive joints |
title_fullStr |
Advanced techniques for estimation of the tensile fracture toughness of adhesive joints |
title_full_unstemmed |
Advanced techniques for estimation of the tensile fracture toughness of adhesive joints |
title_sort |
Advanced techniques for estimation of the tensile fracture toughness of adhesive joints |
author |
Campilho, R.D.S.G. |
author_facet |
Campilho, R.D.S.G. Banea, M.D. da Silva, L.F.M. |
author_role |
author |
author2 |
Banea, M.D. da Silva, L.F.M. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Campilho, R.D.S.G. Banea, M.D. da Silva, L.F.M. |
dc.subject.por.fl_str_mv |
Fibres Fracture toughness Damage mechanics Joining |
topic |
Fibres Fracture toughness Damage mechanics Joining |
description |
Adhesive bonding has become more efficient in the last few decades due to the adhesives developments, granting higher strength and ductility. As a result, adhesives are being increasingly used in industries such as the automotive, aerospace and construction. Thus, it is highly important to predict the strength of bonded joints to assess the feasibility of joining during the fabrication process of components (e.g. due to complex geometries) or for repairing purposes. When using the Finite Element Method with advanced propagation laws, the tensile (Gnc) and shear (Gsc) fracture toughness of adhesive joints must be determined with accuracy. Several conventional methods to obtain Gnc and Gsc exist in the literature, mainly based on Linear Elastic Fracture Mechanics (LEFM). The J-integral technique is accurate to measure these parameters for adhesives with high ductility. In this work, the J-integral is used to obtain Gnc by the Double-Cantilever Beam (DCB) test. An optical measurement method is developed for the evaluation of the crack tip opening and adherends rotation at the crack tip during the test, supported by a Matlab® sub-routine for the automated extraction of these quantities. As output of this work, an optical method that allows an easier and quicker extraction of the parameters to obtain Gnc than the available methods is proposed (by the J-integral technique) and some results are presented regarding joints with different geometry and adherend material. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014 2014-01-01T00:00:00Z 2020-04-29T10:13:38Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/15915 |
url |
http://hdl.handle.net/10400.22/15915 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.3221/IGF-ESIS.31.01 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Italian Group of Fracture |
publisher.none.fl_str_mv |
Italian Group of Fracture |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131447341088768 |