Predicting Account Receivables Outcomes with Machine-Learning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/134205 |
Resumo: | Project Work presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business Intelligence |
id |
RCAP_d8173437b0f462f9274c5899895b5081 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/134205 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Predicting Account Receivables Outcomes with Machine-LearningCash FlowAccount ReceivablesMachine-LearningLightGBMProject Work presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business IntelligenceThe Account Receivables (AR) of a company are considered an important determinant of a company’s Cash Flow – the backbone of a company’s financial performance or health. It has been proved that by efficiently managing the money owed by customers for goods and services (AR), a company can avoid financial difficulties and even stabilize results in moments of extreme volatility. The aim of this project is to use machine-learning and data visualization techniques to predict invoice outcomes and provide useful information and a solution using analytics to the collection management team. Specifically, this project demonstrates how supervised learning models can classify with high accuracy whether a newly created invoice will be paid earlier, on-time or later than the contracted due date. It is also studied how to predict the magnitude of the delayed payments by classifying them into interesting, delayed categories for the business: up to 1 month late, from 1 to 3 months late and delayed for more than 3 months. The developed models use real-life data from a multinational company in the manufacturing and automation industries and can predict payments with higher accuracy than the baseline achieved by the business.Henriques, Roberto André PereiraRUNRebelo, Susana Lopes da Costa2022-03-10T18:39:29Z2022-01-282022-01-28T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/134205TID:202960617enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:12:39Zoai:run.unl.pt:10362/134205Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:48:01.313071Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Predicting Account Receivables Outcomes with Machine-Learning |
title |
Predicting Account Receivables Outcomes with Machine-Learning |
spellingShingle |
Predicting Account Receivables Outcomes with Machine-Learning Rebelo, Susana Lopes da Costa Cash Flow Account Receivables Machine-Learning LightGBM |
title_short |
Predicting Account Receivables Outcomes with Machine-Learning |
title_full |
Predicting Account Receivables Outcomes with Machine-Learning |
title_fullStr |
Predicting Account Receivables Outcomes with Machine-Learning |
title_full_unstemmed |
Predicting Account Receivables Outcomes with Machine-Learning |
title_sort |
Predicting Account Receivables Outcomes with Machine-Learning |
author |
Rebelo, Susana Lopes da Costa |
author_facet |
Rebelo, Susana Lopes da Costa |
author_role |
author |
dc.contributor.none.fl_str_mv |
Henriques, Roberto André Pereira RUN |
dc.contributor.author.fl_str_mv |
Rebelo, Susana Lopes da Costa |
dc.subject.por.fl_str_mv |
Cash Flow Account Receivables Machine-Learning LightGBM |
topic |
Cash Flow Account Receivables Machine-Learning LightGBM |
description |
Project Work presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business Intelligence |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-03-10T18:39:29Z 2022-01-28 2022-01-28T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/134205 TID:202960617 |
url |
http://hdl.handle.net/10362/134205 |
identifier_str_mv |
TID:202960617 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138082303246336 |