Convex semi-infinite programming: implicit optimality criterion based on the concept of immobile points
Autor(a) principal: | |
---|---|
Data de Publicação: | 2005 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/6241 |
Resumo: | The paper deals with convex Semi-In¯nite Programming (SIP) problems. A new concept of immobility order is introduced and an algorithm of determination of the immobility orders (DIO algorithm) and so called immobile points is suggested. It is shown that in the presence of the immobile points SIP problems do not satisfy the Slater condition. Given convex SIP problem, we determine all its immobile points and use them to formulate a Nonlinear Programming (NLP) problem in a special form. It is proved that optimality conditions for the (in¯nite) SIP problem can be formulated in terms of the analogous conditions for the corresponding (¯nite) NLP problem. The main result of the paper is the Implicit Optimality Criterion that permits to obtain new e±cient optimality conditions for the convex SIP problems (even not satisfying the Slater condition) using the known results of the optimality theory of NLP. |
id |
RCAP_d8240397404f4c8d8d9c28c9cb211ff1 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/6241 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Convex semi-infinite programming: implicit optimality criterion based on the concept of immobile pointsSemi-infinite programmingNonlinear programmingThe Slater conditionOptimality criterionThe paper deals with convex Semi-In¯nite Programming (SIP) problems. A new concept of immobility order is introduced and an algorithm of determination of the immobility orders (DIO algorithm) and so called immobile points is suggested. It is shown that in the presence of the immobile points SIP problems do not satisfy the Slater condition. Given convex SIP problem, we determine all its immobile points and use them to formulate a Nonlinear Programming (NLP) problem in a special form. It is proved that optimality conditions for the (in¯nite) SIP problem can be formulated in terms of the analogous conditions for the corresponding (¯nite) NLP problem. The main result of the paper is the Implicit Optimality Criterion that permits to obtain new e±cient optimality conditions for the convex SIP problems (even not satisfying the Slater condition) using the known results of the optimality theory of NLP.Universidade de Aveiro2012-02-10T17:16:07Z2005-01-01T00:00:00Z2005info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/6241engKostyukova, O. I.Tchemisova, T. V.Yermalinskaya, S. A.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:10:34Zoai:ria.ua.pt:10773/6241Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:44:18.665100Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Convex semi-infinite programming: implicit optimality criterion based on the concept of immobile points |
title |
Convex semi-infinite programming: implicit optimality criterion based on the concept of immobile points |
spellingShingle |
Convex semi-infinite programming: implicit optimality criterion based on the concept of immobile points Kostyukova, O. I. Semi-infinite programming Nonlinear programming The Slater condition Optimality criterion |
title_short |
Convex semi-infinite programming: implicit optimality criterion based on the concept of immobile points |
title_full |
Convex semi-infinite programming: implicit optimality criterion based on the concept of immobile points |
title_fullStr |
Convex semi-infinite programming: implicit optimality criterion based on the concept of immobile points |
title_full_unstemmed |
Convex semi-infinite programming: implicit optimality criterion based on the concept of immobile points |
title_sort |
Convex semi-infinite programming: implicit optimality criterion based on the concept of immobile points |
author |
Kostyukova, O. I. |
author_facet |
Kostyukova, O. I. Tchemisova, T. V. Yermalinskaya, S. A. |
author_role |
author |
author2 |
Tchemisova, T. V. Yermalinskaya, S. A. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Kostyukova, O. I. Tchemisova, T. V. Yermalinskaya, S. A. |
dc.subject.por.fl_str_mv |
Semi-infinite programming Nonlinear programming The Slater condition Optimality criterion |
topic |
Semi-infinite programming Nonlinear programming The Slater condition Optimality criterion |
description |
The paper deals with convex Semi-In¯nite Programming (SIP) problems. A new concept of immobility order is introduced and an algorithm of determination of the immobility orders (DIO algorithm) and so called immobile points is suggested. It is shown that in the presence of the immobile points SIP problems do not satisfy the Slater condition. Given convex SIP problem, we determine all its immobile points and use them to formulate a Nonlinear Programming (NLP) problem in a special form. It is proved that optimality conditions for the (in¯nite) SIP problem can be formulated in terms of the analogous conditions for the corresponding (¯nite) NLP problem. The main result of the paper is the Implicit Optimality Criterion that permits to obtain new e±cient optimality conditions for the convex SIP problems (even not satisfying the Slater condition) using the known results of the optimality theory of NLP. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-01-01T00:00:00Z 2005 2012-02-10T17:16:07Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/6241 |
url |
http://hdl.handle.net/10773/6241 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade de Aveiro |
publisher.none.fl_str_mv |
Universidade de Aveiro |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137494689644544 |