A multilayered graph-based framework to explore behavioural phenomena in social media conversations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/1822/86653 |
Resumo: | Objective Social media is part of current health communications. This research aims to delve into the effects of social contagion, biased assimilation, and homophily in building and changing health opinions on social media. Materials and Methods Conversations about COVID-19 vaccination on English and Spanish Twitter are the case studies. A new multilayered graph-based framework supports the integrated analysis of content similarity within and across posts, users, and conversations to interpret contrasting and confluent user stances. Deep learning models are applied to infer stance. Graph centrality and homophily scores support the interpretation of information reproduction. Results The results show that semantically related English posts tend to present a similar stance about COVID-19 vaccination (rstance=0.51) whereas Spanish posts are more heterophilic (rstance=0.38). Neither case showed evidence of homophily regarding user influence or vaccine hashtags. Graph filters for Pfizer and Astrazeneca with a similarity threshold of 0.85 show stance homophily in English scenarios (i.e. rstance=0.45 and rstance=0.58, respectively) and small homophily in Spanish scenarios (i.e. r=0.12 and r=0.3, respectively). Highly connected users are a minority and are not socially influential. Spanish conversations showed stance homophily, i.e. most of the connected conversations promote vaccination (rstance=0.42), whereas English conversations are more likely to offer contrasting stances. Conclusion The methodology proposed for quantifying the impact of natural and intentional social behaviours in health information reproduction can be applied to any of the main social platforms and any given topic of conversation. Its effectiveness was demonstrated by two case studies describing English and Spanish demographic and sociocultural scenarios. |
id |
RCAP_d89486d8477c746f460800d64177f707 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/86653 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A multilayered graph-based framework to explore behavioural phenomena in social media conversationsSocial mediaStanceBiased assimilationHomophilyMultidimensional analysisObjective Social media is part of current health communications. This research aims to delve into the effects of social contagion, biased assimilation, and homophily in building and changing health opinions on social media. Materials and Methods Conversations about COVID-19 vaccination on English and Spanish Twitter are the case studies. A new multilayered graph-based framework supports the integrated analysis of content similarity within and across posts, users, and conversations to interpret contrasting and confluent user stances. Deep learning models are applied to infer stance. Graph centrality and homophily scores support the interpretation of information reproduction. Results The results show that semantically related English posts tend to present a similar stance about COVID-19 vaccination (rstance=0.51) whereas Spanish posts are more heterophilic (rstance=0.38). Neither case showed evidence of homophily regarding user influence or vaccine hashtags. Graph filters for Pfizer and Astrazeneca with a similarity threshold of 0.85 show stance homophily in English scenarios (i.e. rstance=0.45 and rstance=0.58, respectively) and small homophily in Spanish scenarios (i.e. r=0.12 and r=0.3, respectively). Highly connected users are a minority and are not socially influential. Spanish conversations showed stance homophily, i.e. most of the connected conversations promote vaccination (rstance=0.42), whereas English conversations are more likely to offer contrasting stances. Conclusion The methodology proposed for quantifying the impact of natural and intentional social behaviours in health information reproduction can be applied to any of the main social platforms and any given topic of conversation. Its effectiveness was demonstrated by two case studies describing English and Spanish demographic and sociocultural scenarios.This study was supported by MCIN/AEI/ 10.13039/501100011033 under the scope of the CURMIS4th project (Grant PID2020–113673RB-I00), the Consellería de Educación, Universidades e Formación Profesional (Xunta de Galicia) under the scope of the strategic funding of ED431C2018/55-GRC Competitive Reference Group, the “Centro singular de investigación de Galicia” (accreditation 2019–2022), and the Portuguese Foundation for Science and Technology(FCT) under the scope of the strategic funding of UIDB/04469/2020 unit. SING group thanks CITI (Centro de Investigación, Transferencia e Innovación) from the University of Vigo for hosting its IT infrastructure. Funding for open access charge: Universidade de Vigo/CISUG.info:eu-repo/semantics/publishedVersionElsevierUniversidade do MinhoBlanco, GuillermoLourenço, Anália Maria Garcia2023-112023-11-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/86653engBlanco, Guillermo; Lourenço, Anália, A multilayered graph-based framework to explore behavioural phenomena in social media conversations. International Journal of Medical Informatics, 179(105236), 20231386-505610.1016/j.ijmedinf.2023.10523637776669105236https://www.sciencedirect.com/journal/international-journal-of-medical-informaticsinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-02T01:20:42Zoai:repositorium.sdum.uminho.pt:1822/86653Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:33:32.659988Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A multilayered graph-based framework to explore behavioural phenomena in social media conversations |
title |
A multilayered graph-based framework to explore behavioural phenomena in social media conversations |
spellingShingle |
A multilayered graph-based framework to explore behavioural phenomena in social media conversations Blanco, Guillermo Social media Stance Biased assimilation Homophily Multidimensional analysis |
title_short |
A multilayered graph-based framework to explore behavioural phenomena in social media conversations |
title_full |
A multilayered graph-based framework to explore behavioural phenomena in social media conversations |
title_fullStr |
A multilayered graph-based framework to explore behavioural phenomena in social media conversations |
title_full_unstemmed |
A multilayered graph-based framework to explore behavioural phenomena in social media conversations |
title_sort |
A multilayered graph-based framework to explore behavioural phenomena in social media conversations |
author |
Blanco, Guillermo |
author_facet |
Blanco, Guillermo Lourenço, Anália Maria Garcia |
author_role |
author |
author2 |
Lourenço, Anália Maria Garcia |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Blanco, Guillermo Lourenço, Anália Maria Garcia |
dc.subject.por.fl_str_mv |
Social media Stance Biased assimilation Homophily Multidimensional analysis |
topic |
Social media Stance Biased assimilation Homophily Multidimensional analysis |
description |
Objective Social media is part of current health communications. This research aims to delve into the effects of social contagion, biased assimilation, and homophily in building and changing health opinions on social media. Materials and Methods Conversations about COVID-19 vaccination on English and Spanish Twitter are the case studies. A new multilayered graph-based framework supports the integrated analysis of content similarity within and across posts, users, and conversations to interpret contrasting and confluent user stances. Deep learning models are applied to infer stance. Graph centrality and homophily scores support the interpretation of information reproduction. Results The results show that semantically related English posts tend to present a similar stance about COVID-19 vaccination (rstance=0.51) whereas Spanish posts are more heterophilic (rstance=0.38). Neither case showed evidence of homophily regarding user influence or vaccine hashtags. Graph filters for Pfizer and Astrazeneca with a similarity threshold of 0.85 show stance homophily in English scenarios (i.e. rstance=0.45 and rstance=0.58, respectively) and small homophily in Spanish scenarios (i.e. r=0.12 and r=0.3, respectively). Highly connected users are a minority and are not socially influential. Spanish conversations showed stance homophily, i.e. most of the connected conversations promote vaccination (rstance=0.42), whereas English conversations are more likely to offer contrasting stances. Conclusion The methodology proposed for quantifying the impact of natural and intentional social behaviours in health information reproduction can be applied to any of the main social platforms and any given topic of conversation. Its effectiveness was demonstrated by two case studies describing English and Spanish demographic and sociocultural scenarios. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-11 2023-11-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/86653 |
url |
https://hdl.handle.net/1822/86653 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Blanco, Guillermo; Lourenço, Anália, A multilayered graph-based framework to explore behavioural phenomena in social media conversations. International Journal of Medical Informatics, 179(105236), 2023 1386-5056 10.1016/j.ijmedinf.2023.105236 37776669 105236 https://www.sciencedirect.com/journal/international-journal-of-medical-informatics |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133601005043712 |