Salinity-induced effects on transpiration rate, stomatal conductance and leaf area of three olive (Olea europaea L.) varieties

Detalhes bibliográficos
Autor(a) principal: Coelho, Renato
Data de Publicação: 2013
Outros Autores: Moitas, Mário, Rato, A.E., Vaz, Margarida
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10174/10688
Resumo: Transpiration of two year-old olive trees of three different varieties, Arbequina, Cobrançosa and Galega (18 trees per variety), irrigated with three levels of salt (0, 80 or 200 mM NaCl) for about 90 days, was measured by a gravimetric method. To determine leaf area, each tree was photographed from the side against a white background and the total area of each projected image was determined with ImageJ software. To calibrate these area determinations, one tree of each variety was subsequently stripped of all its leaves and its total leaf area was accurately measured. A correlation was then obtained between the area on the photograph of this particular tree and the total area of the detached leaves of the same tree. Using the leaf area determined by this procedure, transpiration rates of the trees could be calculated. Knowing leaf and air temperatures and RH, it was possible to determine the difference in molar fraction of water between the leaf and the air. Using this and the values of the transpiration rate, stomatal conductance could be calculated (gs calc) and compared with the conductance measured on the same trees with a porometer (gs). Actual leaf area of a plant was 1,40 (Arbequina), 1,42 (Cobrançosa) or 1,24 (Galega) times the area measured with ImageJ on the photograph of the same plant. Leaf area of the trees, on average of all salt irrigations, was significantly higher on Arbequina (0,187 m2) then on the other two varieties (0,138 m2 or 0,148 m2, for Cobrançosa or Galega, respectively), but did not differ significantly in percentage of controls (0 salt). On average of all three varieties, leaf area was also higher on plants irrigated without salt (0,181 m2) than on plants exposed to 80 or 200 mM NaCl (0,152 m2 or 0,140 m2, respectively), which did not differ between them. The same significant difference was observed when leaf area was expressed as percentage of controls. Transpiration rate was significantly higher on Cobrançosa (1,17 mmol m-2 s-1), on average of all treatments, but there were no significant differences between Arbequina (1,08 mmol m-2 s-1) and Galega (0,82 mmol m-2 s-1). In percentage of controls, there were no significant differences between varieties. Salt reduced significantly the transpiration rate in all varieties, both the actual and percentual values, to about 50% or 30% of controls when exposed to 80 mM or 200 mM NaCl, respectively. Stomatal conductance (gs), assessed by porometry, was significantly higher in control plants, mainly in Cobrançosa (102 mmol m-2 s-1), then in Arbequina (77 mmol m-2 s-1) and the lower values were found in Galega (51 mmol m-2 s-1). Salt reduced gs, on average of the three varieties to 30% or 10% of controls on exposure to 80 mM or 200 mM NaCl, respectively. Calculated (gs calc) and measured (gs) values of stomatal conductance showed a close relation between them (0,967, R2 = 0,837) which indicates this non-destructive method to determine whole-plant leaf area to be reasonably accurate.
id RCAP_d8dfc9c705c56a5136b974dee612345c
oai_identifier_str oai:dspace.uevora.pt:10174/10688
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Salinity-induced effects on transpiration rate, stomatal conductance and leaf area of three olive (Olea europaea L.) varietiesolivre treessalinitytranspirationleaf areaTranspiration of two year-old olive trees of three different varieties, Arbequina, Cobrançosa and Galega (18 trees per variety), irrigated with three levels of salt (0, 80 or 200 mM NaCl) for about 90 days, was measured by a gravimetric method. To determine leaf area, each tree was photographed from the side against a white background and the total area of each projected image was determined with ImageJ software. To calibrate these area determinations, one tree of each variety was subsequently stripped of all its leaves and its total leaf area was accurately measured. A correlation was then obtained between the area on the photograph of this particular tree and the total area of the detached leaves of the same tree. Using the leaf area determined by this procedure, transpiration rates of the trees could be calculated. Knowing leaf and air temperatures and RH, it was possible to determine the difference in molar fraction of water between the leaf and the air. Using this and the values of the transpiration rate, stomatal conductance could be calculated (gs calc) and compared with the conductance measured on the same trees with a porometer (gs). Actual leaf area of a plant was 1,40 (Arbequina), 1,42 (Cobrançosa) or 1,24 (Galega) times the area measured with ImageJ on the photograph of the same plant. Leaf area of the trees, on average of all salt irrigations, was significantly higher on Arbequina (0,187 m2) then on the other two varieties (0,138 m2 or 0,148 m2, for Cobrançosa or Galega, respectively), but did not differ significantly in percentage of controls (0 salt). On average of all three varieties, leaf area was also higher on plants irrigated without salt (0,181 m2) than on plants exposed to 80 or 200 mM NaCl (0,152 m2 or 0,140 m2, respectively), which did not differ between them. The same significant difference was observed when leaf area was expressed as percentage of controls. Transpiration rate was significantly higher on Cobrançosa (1,17 mmol m-2 s-1), on average of all treatments, but there were no significant differences between Arbequina (1,08 mmol m-2 s-1) and Galega (0,82 mmol m-2 s-1). In percentage of controls, there were no significant differences between varieties. Salt reduced significantly the transpiration rate in all varieties, both the actual and percentual values, to about 50% or 30% of controls when exposed to 80 mM or 200 mM NaCl, respectively. Stomatal conductance (gs), assessed by porometry, was significantly higher in control plants, mainly in Cobrançosa (102 mmol m-2 s-1), then in Arbequina (77 mmol m-2 s-1) and the lower values were found in Galega (51 mmol m-2 s-1). Salt reduced gs, on average of the three varieties to 30% or 10% of controls on exposure to 80 mM or 200 mM NaCl, respectively. Calculated (gs calc) and measured (gs) values of stomatal conductance showed a close relation between them (0,967, R2 = 0,837) which indicates this non-destructive method to determine whole-plant leaf area to be reasonably accurate.Actas XII Congresso Luso-Espanhol de Fisiologia Vegetal, Lisboa2014-02-13T11:13:42Z2014-02-132013-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://hdl.handle.net/10174/10688http://hdl.handle.net/10174/10688engnaonaosimrcoelho@uevora.ptndaerato@uevora.ptmvaz@uevora.pt363Coelho, RenatoMoitas, MárioRato, A.E.Vaz, Margaridainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T18:53:46Zoai:dspace.uevora.pt:10174/10688Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:04:33.596786Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Salinity-induced effects on transpiration rate, stomatal conductance and leaf area of three olive (Olea europaea L.) varieties
title Salinity-induced effects on transpiration rate, stomatal conductance and leaf area of three olive (Olea europaea L.) varieties
spellingShingle Salinity-induced effects on transpiration rate, stomatal conductance and leaf area of three olive (Olea europaea L.) varieties
Coelho, Renato
olivre trees
salinity
transpiration
leaf area
title_short Salinity-induced effects on transpiration rate, stomatal conductance and leaf area of three olive (Olea europaea L.) varieties
title_full Salinity-induced effects on transpiration rate, stomatal conductance and leaf area of three olive (Olea europaea L.) varieties
title_fullStr Salinity-induced effects on transpiration rate, stomatal conductance and leaf area of three olive (Olea europaea L.) varieties
title_full_unstemmed Salinity-induced effects on transpiration rate, stomatal conductance and leaf area of three olive (Olea europaea L.) varieties
title_sort Salinity-induced effects on transpiration rate, stomatal conductance and leaf area of three olive (Olea europaea L.) varieties
author Coelho, Renato
author_facet Coelho, Renato
Moitas, Mário
Rato, A.E.
Vaz, Margarida
author_role author
author2 Moitas, Mário
Rato, A.E.
Vaz, Margarida
author2_role author
author
author
dc.contributor.author.fl_str_mv Coelho, Renato
Moitas, Mário
Rato, A.E.
Vaz, Margarida
dc.subject.por.fl_str_mv olivre trees
salinity
transpiration
leaf area
topic olivre trees
salinity
transpiration
leaf area
description Transpiration of two year-old olive trees of three different varieties, Arbequina, Cobrançosa and Galega (18 trees per variety), irrigated with three levels of salt (0, 80 or 200 mM NaCl) for about 90 days, was measured by a gravimetric method. To determine leaf area, each tree was photographed from the side against a white background and the total area of each projected image was determined with ImageJ software. To calibrate these area determinations, one tree of each variety was subsequently stripped of all its leaves and its total leaf area was accurately measured. A correlation was then obtained between the area on the photograph of this particular tree and the total area of the detached leaves of the same tree. Using the leaf area determined by this procedure, transpiration rates of the trees could be calculated. Knowing leaf and air temperatures and RH, it was possible to determine the difference in molar fraction of water between the leaf and the air. Using this and the values of the transpiration rate, stomatal conductance could be calculated (gs calc) and compared with the conductance measured on the same trees with a porometer (gs). Actual leaf area of a plant was 1,40 (Arbequina), 1,42 (Cobrançosa) or 1,24 (Galega) times the area measured with ImageJ on the photograph of the same plant. Leaf area of the trees, on average of all salt irrigations, was significantly higher on Arbequina (0,187 m2) then on the other two varieties (0,138 m2 or 0,148 m2, for Cobrançosa or Galega, respectively), but did not differ significantly in percentage of controls (0 salt). On average of all three varieties, leaf area was also higher on plants irrigated without salt (0,181 m2) than on plants exposed to 80 or 200 mM NaCl (0,152 m2 or 0,140 m2, respectively), which did not differ between them. The same significant difference was observed when leaf area was expressed as percentage of controls. Transpiration rate was significantly higher on Cobrançosa (1,17 mmol m-2 s-1), on average of all treatments, but there were no significant differences between Arbequina (1,08 mmol m-2 s-1) and Galega (0,82 mmol m-2 s-1). In percentage of controls, there were no significant differences between varieties. Salt reduced significantly the transpiration rate in all varieties, both the actual and percentual values, to about 50% or 30% of controls when exposed to 80 mM or 200 mM NaCl, respectively. Stomatal conductance (gs), assessed by porometry, was significantly higher in control plants, mainly in Cobrançosa (102 mmol m-2 s-1), then in Arbequina (77 mmol m-2 s-1) and the lower values were found in Galega (51 mmol m-2 s-1). Salt reduced gs, on average of the three varieties to 30% or 10% of controls on exposure to 80 mM or 200 mM NaCl, respectively. Calculated (gs calc) and measured (gs) values of stomatal conductance showed a close relation between them (0,967, R2 = 0,837) which indicates this non-destructive method to determine whole-plant leaf area to be reasonably accurate.
publishDate 2013
dc.date.none.fl_str_mv 2013-01-01T00:00:00Z
2014-02-13T11:13:42Z
2014-02-13
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10174/10688
http://hdl.handle.net/10174/10688
url http://hdl.handle.net/10174/10688
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv nao
nao
sim
rcoelho@uevora.pt
nd
aerato@uevora.pt
mvaz@uevora.pt
363
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Actas XII Congresso Luso-Espanhol de Fisiologia Vegetal, Lisboa
publisher.none.fl_str_mv Actas XII Congresso Luso-Espanhol de Fisiologia Vegetal, Lisboa
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1817553135157116928