HPD-invariance of the Tate conjecture(s)

Detalhes bibliográficos
Autor(a) principal: Tabuada, Gonçalo
Data de Publicação: 2023
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/162646
Resumo: Funding Information: Funding. The author was partially supported by the Huawei-IHÉS research funds and by the FCT – Fundação para a Ciência e a Tecnologia, I.P., under the scope of the projects UIDB/00297/2020 and UIDP/00297/2020 (Center for Mathematics and Applications). Publisher Copyright: © 2023 European Mathematical Society.
id RCAP_d8e0e683eac9029e5e95a4c28a5c6602
oai_identifier_str oai:run.unl.pt:10362/162646
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling HPD-invariance of the Tate conjecture(s)homological projective dualitynoncommutative algebraic geometryTate conjectureAlgebra and Number TheoryMathematical PhysicsGeometry and TopologyFunding Information: Funding. The author was partially supported by the Huawei-IHÉS research funds and by the FCT – Fundação para a Ciência e a Tecnologia, I.P., under the scope of the projects UIDB/00297/2020 and UIDP/00297/2020 (Center for Mathematics and Applications). Publisher Copyright: © 2023 European Mathematical Society.We prove that the Tate conjecture (and its variants) is invariant under homological projective duality. As an application, we obtain a proof, resp. an alternative proof, of the Tate conjecture (and of its variants) in the new case of linear sections of determinantal varieties, resp. in the old cases of Pfaffian cubic fourfolds and complete intersections of quadrics. In addition, we generalize the Tate conjecture (and its variants) from schemes to stacks and prove this generalized conjecture(s) for low-dimensional root stacks and low-dimensional (twisted) orbifolds.CMA - Centro de Matemática e AplicaçõesDM - Departamento de MatemáticaRUNTabuada, Gonçalo2024-01-22T22:51:39Z2023-022023-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article26application/pdfhttp://hdl.handle.net/10362/162646eng1661-6952PURE: 72617617https://doi.org/10.4171/JNCG/462info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:45:34Zoai:run.unl.pt:10362/162646Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:59:00.051319Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv HPD-invariance of the Tate conjecture(s)
title HPD-invariance of the Tate conjecture(s)
spellingShingle HPD-invariance of the Tate conjecture(s)
Tabuada, Gonçalo
homological projective duality
noncommutative algebraic geometry
Tate conjecture
Algebra and Number Theory
Mathematical Physics
Geometry and Topology
title_short HPD-invariance of the Tate conjecture(s)
title_full HPD-invariance of the Tate conjecture(s)
title_fullStr HPD-invariance of the Tate conjecture(s)
title_full_unstemmed HPD-invariance of the Tate conjecture(s)
title_sort HPD-invariance of the Tate conjecture(s)
author Tabuada, Gonçalo
author_facet Tabuada, Gonçalo
author_role author
dc.contributor.none.fl_str_mv CMA - Centro de Matemática e Aplicações
DM - Departamento de Matemática
RUN
dc.contributor.author.fl_str_mv Tabuada, Gonçalo
dc.subject.por.fl_str_mv homological projective duality
noncommutative algebraic geometry
Tate conjecture
Algebra and Number Theory
Mathematical Physics
Geometry and Topology
topic homological projective duality
noncommutative algebraic geometry
Tate conjecture
Algebra and Number Theory
Mathematical Physics
Geometry and Topology
description Funding Information: Funding. The author was partially supported by the Huawei-IHÉS research funds and by the FCT – Fundação para a Ciência e a Tecnologia, I.P., under the scope of the projects UIDB/00297/2020 and UIDP/00297/2020 (Center for Mathematics and Applications). Publisher Copyright: © 2023 European Mathematical Society.
publishDate 2023
dc.date.none.fl_str_mv 2023-02
2023-02-01T00:00:00Z
2024-01-22T22:51:39Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/162646
url http://hdl.handle.net/10362/162646
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1661-6952
PURE: 72617617
https://doi.org/10.4171/JNCG/462
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 26
application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138170318618624