HPD-invariance of the Tate conjecture(s)
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/162646 |
Resumo: | Funding Information: Funding. The author was partially supported by the Huawei-IHÉS research funds and by the FCT – Fundação para a Ciência e a Tecnologia, I.P., under the scope of the projects UIDB/00297/2020 and UIDP/00297/2020 (Center for Mathematics and Applications). Publisher Copyright: © 2023 European Mathematical Society. |
id |
RCAP_d8e0e683eac9029e5e95a4c28a5c6602 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/162646 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
HPD-invariance of the Tate conjecture(s)homological projective dualitynoncommutative algebraic geometryTate conjectureAlgebra and Number TheoryMathematical PhysicsGeometry and TopologyFunding Information: Funding. The author was partially supported by the Huawei-IHÉS research funds and by the FCT – Fundação para a Ciência e a Tecnologia, I.P., under the scope of the projects UIDB/00297/2020 and UIDP/00297/2020 (Center for Mathematics and Applications). Publisher Copyright: © 2023 European Mathematical Society.We prove that the Tate conjecture (and its variants) is invariant under homological projective duality. As an application, we obtain a proof, resp. an alternative proof, of the Tate conjecture (and of its variants) in the new case of linear sections of determinantal varieties, resp. in the old cases of Pfaffian cubic fourfolds and complete intersections of quadrics. In addition, we generalize the Tate conjecture (and its variants) from schemes to stacks and prove this generalized conjecture(s) for low-dimensional root stacks and low-dimensional (twisted) orbifolds.CMA - Centro de Matemática e AplicaçõesDM - Departamento de MatemáticaRUNTabuada, Gonçalo2024-01-22T22:51:39Z2023-022023-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article26application/pdfhttp://hdl.handle.net/10362/162646eng1661-6952PURE: 72617617https://doi.org/10.4171/JNCG/462info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:45:34Zoai:run.unl.pt:10362/162646Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:59:00.051319Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
HPD-invariance of the Tate conjecture(s) |
title |
HPD-invariance of the Tate conjecture(s) |
spellingShingle |
HPD-invariance of the Tate conjecture(s) Tabuada, Gonçalo homological projective duality noncommutative algebraic geometry Tate conjecture Algebra and Number Theory Mathematical Physics Geometry and Topology |
title_short |
HPD-invariance of the Tate conjecture(s) |
title_full |
HPD-invariance of the Tate conjecture(s) |
title_fullStr |
HPD-invariance of the Tate conjecture(s) |
title_full_unstemmed |
HPD-invariance of the Tate conjecture(s) |
title_sort |
HPD-invariance of the Tate conjecture(s) |
author |
Tabuada, Gonçalo |
author_facet |
Tabuada, Gonçalo |
author_role |
author |
dc.contributor.none.fl_str_mv |
CMA - Centro de Matemática e Aplicações DM - Departamento de Matemática RUN |
dc.contributor.author.fl_str_mv |
Tabuada, Gonçalo |
dc.subject.por.fl_str_mv |
homological projective duality noncommutative algebraic geometry Tate conjecture Algebra and Number Theory Mathematical Physics Geometry and Topology |
topic |
homological projective duality noncommutative algebraic geometry Tate conjecture Algebra and Number Theory Mathematical Physics Geometry and Topology |
description |
Funding Information: Funding. The author was partially supported by the Huawei-IHÉS research funds and by the FCT – Fundação para a Ciência e a Tecnologia, I.P., under the scope of the projects UIDB/00297/2020 and UIDP/00297/2020 (Center for Mathematics and Applications). Publisher Copyright: © 2023 European Mathematical Society. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-02 2023-02-01T00:00:00Z 2024-01-22T22:51:39Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/162646 |
url |
http://hdl.handle.net/10362/162646 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1661-6952 PURE: 72617617 https://doi.org/10.4171/JNCG/462 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
26 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138170318618624 |